F2 Binära tal EDA070 Datorer och datoranvändning
|
|
- Stefan Lundberg
- för 8 år sedan
- Visningar:
Transkript
1 Datarepresentation F2 Binära tal EDA070 Roger Henriksson I en dator lagras och behandlas all information i form av binära tal ettor och nollor. En binär siffra kallas för en bit BInary digit. Ett antal bitar kombineras ihop till större enheter: Byte 8 bitar Word 16, 32 eller 64 bitar Bitarnas innebörd beror på hur vi väljer att tolka dem tal, text, ljud, bilder, programinstruktioner, etc. 2 Talsystem Vi använder talsystem för att representera numeriska värden. Vårt vanliga, decimala, talsystem är ett så kallat positionssystem. 827 = = I detta talsystem utgör talet 10 systemets bas. Siffrornas position anger hur många gånger motsvarande potens av basen behöver adderas till. 3 Binära tal Det binära talsystemet är ett talsystem med basen = = = = = = 56 Praktisk sekvens att memorera: 1,2,4,8,16,32,64,128, På detta vis kan en byte representera talen
2 Mest och minst signifikant siffra Mest signifikant siffra Den siffra i ett tal som motsvarar störst värde är mest signifikant. Normalt siffran längst till vänster. Minst signifikant siffra Den siffra i ett tal som motsvarar minst värde är minst signifikant, dvs entalssiffran (siffran längst till höger). Mest signifikant Minst signifikant Algoritm för decimalt till binärt 1. Gör heltalsdivision med Skriv upp resten (0 eller 1). 3. Om heltalsresultatet av divisionen>0 gå till steg 1. Det binära talet utgörs av de uppskrivna resterna med början på den minst signifikanta siffran. 6/2=3, rest 0 3/2=1, rest 1 1/2=0, rest 1 Resultat: 6 kan skrivas som 110 binärt. 5 6 Addition Additionstabell: = = = = 10 Addition görs på liknande sätt som i det vanliga decimala talsystemet: (minnessiffror) (13) (23) = (36) Subtraktion Analogt med vanlig subtraktion i det decimala talsystemet, men: När vi lånar lånar vi inte 10 utan 2! (lån 102=210) (110) (23) = (87) 7 8
3 Negativa tal Naturligtvis kan vi skriva ett negativt binärt tal som , men datorn saknar förståelse för minustecknet. Därför måste vi representera negativa tal på ett annat sätt i datorn. Vi vill t.ex. att: en addition med ett ska alltid ge ett resultat som är ett större än ursprungstalet oavsett om vi tolkar talet som positivt eller negativt. att datorns hårdvara inte ska påverkas av hur vi tolkar talet. varje bitmönster ska motsvara ett, och endast ett, tal. Naiv teckenrepresentation Låt den mest signifikanta biten i en byte eller ett ord tala om vilket tecken talet har. Lagra talet -5 i en byte (8 bitar): Vi kan nu representera talen med en byte. Men: Både och motsvarar talet 0 (+0,-0). Addition till negativa bitmönster blir fel: = ( = -6!!!) 9 10 Även i tvåkomplementsform anger mest signifikanta biten talets tecken. N-bitars tvåkomplementsform representerar ett tal - X som: 2 N -X Exempel, -7 i 8-bitars tvåkomplementsform: = Talområde, 8-bitars tvåkomplementstal: Det är enkelt att omvandla ett binärt tal till dess negativa tvåkomplementsform: 1. Invertera talet (byt ettor mot nollor och tvärtom). 2. Addera 1 till talet. Exempel, -7 i 8-bitars tvåkomplementsform: 1. 7 = Invertera: Addera 1: , klart! 11 12
4 Omvandlingen fungerar också åt andra hållet: = Invertera: Addera 1: , klart! Varför fungerar den enkla omvandlingsformen? Jo, om vi t.ex. ska ta reda på hur -X representeras i 8- bitars tvåkomplementsform utgår vi från definitionen: X Detta är samma sak som: X Men att subtrahera något från ett binärt tal som bara består av ettor är samma sak som att invertera talet! Alltså är uttrycket ovan samma sak som att invertera X och sedan addera 1! Aritmetik med tvåkomplement Vi kan hantera addition precis som vanligt utan att egentligen behöva veta om talen ska betraktas som negativa i tvåkomplementsform eller som stora positiva heltal: Exempel, (8-bitarstal): tvåk. pos ========= (1) (259 - overflow) Subtraktion med tvåkomplement Räkna ut ! Börja med att negera andra termen och byt till addition. Utför därefter additionen: = = (efter att ha slängt bort overflow-ettan ) Förenklar datorns hårdvara eftersom man slipper bygga kretsar både för addition och subtraktion
5 Hexadecimala tal Talsystem med 16 som bas. Praktiskt eftersom 16 = 2 4, vilket innebär att fyra binära siffror direkt kan översättas till en hexadecimal. Siffror: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Konvertera mellan binärt och hexadecimalt: = 5A9F Gruppera de binära siffrorna i grupper om fyra! Hexadecimalt till decimalt till hexadecimalt Konvertera 5A9F till decimalt: 5A9F16 = = = Decimal till hexadecimal konverting görs enligt algoritmen för konvertering till binärt, fast man dividerar med 16 i stället för med Oktala tal Talsystem med 8 som bas. 8 = 2 3, så det är enkelt att konvertera grupper om tre binära siffror till oktal form och vice versa. Unix-kommandot chmod som ändrar accessrättigheterna för en fil: chmod 755 filnamn 7558 = , vilket motsvarar rättigheterna rwxr-xr-x 19
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.
F2 Datarepresentation talbaser, dataformat och teckenkodning
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.
F2 Datarepresentation talbaser, dataformat och teckenkodning
F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekvensiell exekvering av instruktionerna. Roger Henriksson
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet
DIGITALA TAL OCH BOOLESK ALGEBRA
DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt
Digital- och datorteknik
Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k
Talsystem Teori. Vad är talsystem? Av Johan Johansson
Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska
Struktur: Elektroteknik A. Digitalteknik 3p, vt 01. F1: Introduktion. Motivation och målsättning för kurserna i digital elektronik
Digitalteknik 3p, vt 01 Struktur: Elektroteknik A Kurslitteratur: "A First Course in Digital Systems Design - An Integrated Approach" Antal föreläsningar: 11 (2h) Antal laborationer: 4 (4h) Examinationsform:
Digital elektronik CL0090
Digital elektronik CL9 Föreläsning 3 27--29 8.5 2. My Talsystem Binära tal har basen 2 Exempel Det decimala talet 9 motsvarar 2 Den första ettan är MSB, Most Significant Bit, den andra ettan är LSB Least
Binär addition papper och penna metod
EDA4 - Digital och Datorteknik 9/ EDA 4 - Digital och Datorteknik 8/9 Dagens föreläsning: Aritmetik, lärobok kapitel 6 Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man
Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod
inär addition papper och penna metod Dagens föreläsning: Lärobok, kapitel rbetsbok, kapitel Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man kan koda om negativa binära
Datorsystem. Övningshäfte. Senast uppdaterad: 22 oktober 2012 Version 1.0d
Datorsystem Övningshäfte Senast uppdaterad: 22 oktober 2012 Version 1.0d Innehåll Innehåll i 1 Introduktion 1 1.1 Errata............................................... 1 2 Datorns grunder 2 2.1 Övningsuppgifter.........................................
Moment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar
Moment 2 - Digital elektronik Föreläsning 1 Binära tal och logiska grindar Jan Thim 1 F1: Binära tal och logiska grindar Innehåll: Introduktion Talsystem och koder Räkna binärt Logiska grindar Boolesk
Datorsystemteknik DVG A03 Föreläsning 3
Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största
Digital- och datorteknik
Digital- och datorteknik Föreläsning #2 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Talomvandling Principer för omvandling mellan olika talsystem:
2-14 Binära talsystemet-fördjupning Namn:
2-14 Binära talsystemet-fördjupning Namn: Inledning I detta kapitel skall du få lära dig lite mer om det talsystem som datorerna arbetar med. Du skall lära dig att omvandla decimala tal till binära samt
Förenklad förklaring i anslutning till kompedieavsnitten 6.3 och 6.4
Ext-6 (Ver 2010-08-09) 1(5) Förenklad förklaring i anslutning till kompedieavsnitten 6.3 och 6.4 Tecken-beloppsrepresentation av heltal Hur skall man kunna räkna med negativa tal i ett digitalt system,
2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?
2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.
Mattias Wiggberg Collaboration
Informationsteknologi sommarkurs 5p, 24 Mattias Wiggberg Dept. of Information Technology Box 337 SE75 5 Uppsala +46 847 3 76 Collaboration Jakob Carlström Binära tal Slideset 5 Agenda Binära tal Talbaser
Digital Aritmetik Unsigned Integers Signed Integers"
Digital Aritmetik Unsigned Integers Signed Integers" Slides! Per Lindgren! EISLAB! Per.Lindgren@ltu.se! Original Slides! Ingo Sander! KTH/ICT/ES! ingo@kth.se! Talrepresentationer" Ett tal kan representeras
3-3 Skriftliga räknemetoder
Namn: 3-3 Skriftliga räknemetoder Inledning Skriftliga räknemetoder vad är det? undrar du kanske. Och varför behöver jag kunna det? Att det står i läroplanen är ju ett klent svar. Det finns miniräknare,
Det finns en hemsida. Adressen är http://www.idt.mdh.se/kurser/ct3760/
CT3760 Mikrodatorteknik Föreläsning 1 Torsdag 2005-08-25 Upprop. Det finns en hemsida. Adressen är http://www.idt.mdh.se/kurser/ct3760/ Kurslitteratur är Per Foyer Mikroprocessorteknik. Finns på bokhandeln.
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
IE1205 Digital Design: F6 : Digital aritmetik 2
IE1205 Digital Design: F6 : Digital aritmetik 2 Talrepresentationer Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers)
Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45
Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Adderare Addition av två tal innebär att samma förfarande upprepas för varje position i talet. För varje position sakapas en summasiffra och en minnessiffra.
Hur implementera algoritmerna på maskinnivå - datorns byggstenar
Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001
2-13 Binära talsystemet Namn:
2-13 Binära talsystemet Namn: Inledning Det finns inte bara olika taltyper som hela tal, decimaltal, bråktal osv. Det finns olika talsystem också. I det här kapitlet skall du lära dig lite om det talsystem
Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45
Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Adderare Addition av två tal innebär att samma förfarande upprepas för varje position i talet. För varje position sakapas en summasiffra oh en minnessiffra.
Tentamen EDAA05 Datorer i system
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen EDAA05 Datorer i system 2011 10 17, 8.00 13.00 Tillåtna hjälpmedel: bifogad formel- och symbolsamling. För godkänt betyg på tentamen
Övning1 Datorteknik, HH vt12 - Talsystem, logik, minne, instruktioner, assembler
Övning1 Datorteknik, HH vt12 - Talsystem, logik, minne, instruktioner, assembler Talsystem Talsystem - binära tal F1.1. Hur många unsigned integers kan man göra med n bitar? Vilket talområde får dessa
a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio
Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från
Övningar och datorlaborationer, Datorer i system
LUNDS TEKNISKA HÖGSKOLA Datorer i system Institutionen för datavetenskap 2013/14 Övningar och datorlaborationer, Datorer i system Kursen Datorer i system inkluderar under läsperiod HT1 två övningar i seminariesal
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U), föreläsning 3, Kent Palmkvist 2018-01-17 4 TSEA28 Datorteknik Y (och U) Föreläsning 3 Kent Palmkvist, ISY Enkel datormodell Ett minne lagrar program, data och stack Vissa
TSEA28 Datorteknik Y (och U)
TSEA28 Datorteknik Y (och U) Föreläsning 3 Kent Palmkvist, ISY TSEA28 Datorteknik Y (och U), föreläsning 3, Kent Palmkvist 2017-01-18 2 Dagens föreläsning Ordlängder, minnesrymd Kort introduktion till
Övningar och datorlaborationer, Datorer i system
LUNDS TEKNISKA HÖGSKOLA Datorer i system Institutionen för datavetenskap 2010/11 Övningar och datorlaborationer, Datorer i system Kursen Datorer i system inkluderar under läsperiod HT1 två övningar i seminariesal
Kapitel Beräkningar med binära, oktala, decimala och hexadecimala tal
Kapitel 5 Beräkningar med binära, oktala, decimala och hexadecimala tal Denna räknare kan utföra följande operationer som innefattar olika talsystem. Talsystemsomvandling Aritmetiska operationer Negativa
Delbarhet och primtal
Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda
TAL OCH RÄKNING HELTAL
1 TAL OCH RÄKNING HELTAL Avsnitt Heltal... 6 Beräkningar med heltal...16 Test Kan du?... 1, 27 Kapiteltest... 28 Begrepp addition avrundning bas differens division exponent faktor kvadratroten ur kvot
Övningsblad2.3Ä. 2 0, 3 j 5. Addition och subtraktion av heltal med algoritm. IQ '-^ff 2 tiotal - 4 tiotal går inte. ' "-Ii? 5 «1.
Övningsblad2.3Ä Addition och subtraktion av heltal med algoritm Så här kan du räkna med algoritmer a) 958+84 L] ' "-Ii? 5 «1 8 H / o y.2 A, 8*4= 12 Skriv l som minnessiffra ovanför 10-talen. 1+5 +8=14
Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.
Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra
2-1: Taltyper och tallinjen Namn:.
2-1: Taltyper och tallinjen Namn:. Inledning I det här kapitlet skall du studera vad tal är för någonting och hur tal kan organiseras och sorteras efter storleksordning. Vad skall detta vara nödvändigt
DOP-matematik Copyright Tord Persson Övning Bråkräkning. Matematik 1. Uppgift nr 14 Addera 9. Uppgift nr 15 Addera 3. Uppgift nr 16 Subtrahera 6 7-1 7
Övning Bråkräkning Uppgift nr 1 Vilket av bråken 1 och 1 är Uppgift nr Vilket av bråken 1 och 1 är Uppgift nr Skriv ett annat bråk, som är lika stort som bråket 1. Uppgift nr Förläng bråket med Uppgift
Flyttal kan också hantera vanliga tal som både 16- och 32-bitars dataregister hanterar.
FLYTTAL REAL Flyttal används i datorsystem för s k flytande beräkning vilket innebär att decimalkommat inte har någon fix (fast) position. Flyttal består av 2 delar (mantissa och exponent). När ett datorsystem
Institutionen för elektro- och informationsteknologi, LTH
Datorteknik Föreläsning 1 Kursinformation, introduktion, aritmetik Innehåll Hur kan en dator se ut? Vilka är kursens mål? Hur är denna kurs upplagd? Hur ser ett datorsystem ut från applikation till hårdvara?
Innehåll. Datorteknik. Abstraktionsnivå 1. Spelkonsol - blockschema. Spelkonsol abstraktionsnivå 2. Abstraktionsnivå 2
Innehåll Datorteknik Föreläsning 1 Hur kan en dator se ut? Vilka är kursens mål? Hur är denna kurs upplagd? Hur ser ett datorsystem ut från applikation till hårdvara? Vilken är relationen mellan programvara
Digital- och datorteknik
Digital- och datorteknik Föreläsning #24 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Allmänt Behovet av processorinstruktioner för multiplikation
Digitalteknik. Talsystem Grindlogik Koder Booles algebra Tillämpningar Karnaughdiagram. A.Lövdahl
Digitalteknik Talsystem Grindlogik Koder ooles algebra Tillämpningar Karnaughdiagram.Lövdahl 1001001100101100000001011010010 TLSYSTEM Talsystem är en angivelse på en viss position. De vanligaste talsystemen
Binär aritmetik TSIU02 Datorteknik
Binär aritmetik TSIU02 Datorteknik Michael Josefsson Version 1.2 Innehåll 1. Addition och tvåkomplement 5 1.1. Talbaser..................................... 5 1.2. Addition.....................................
NUV 647E. Digitalteknik och Datorarkitektur 5hp. 3x12 = 36 2x12 = 24 1x12 = 12 0x12 = 18
Digital kommer från latinets digitus som betyder "finger" eller "tå" (jfr engelskans digit). Uttrycket kommer från den gamla seden att räkna på fingrarna, och avslöjar att det rör sig om räkning med diskreta
6. Ge korta beskrivningar av följande begrepp a) texteditor b) kompilator c) länkare d) interpretator e) korskompilator f) formatterare ( pretty-print
Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Exempel på tentafrågor på boken Lunell: Datalogi-begreppen och tekniken Obs! Andra frågor än dessa kan komma på tentan! 1. Konvertera talet 186 till
Föreläsning 8: Aritmetik och stora heltal
2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen
PASS 2. POTENSRÄKNING. 2.1 Definition av en potens
PASS. POTENSRÄKNING.1 Definition av en potens Typiskt för matematik är ett kort, lätt och vackert framställningssätt. Den upprepade additionen går att skriva kortare i formen där anger antalet upprepade
ÖH kod. ( en variant av koden används i dag till butikernas streck-kod ) William Sandqvist
ÖH 8.4 7-4-2-1 kod Kodomvandlare 7-4-2-1-kod till BCD-kod. Vid kodning av siffrorna 0 9 användes förr ibland en kod med vikterna 7-4-2-1 i stället för den binära kodens vikter 8-4-2-1. I de fall då en
1Mer om tal. Mål. Grunddel K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: kunna multiplicera och dividera med positiva tal mi ndre än veta vad ett negativt tal är kunna addera och subtrahera negativa tal kunna
Data, typ, selektion, iteration
Data, typ, selektion, iteration En programmeringkurs på halvfart IDT, MDH ttp://www.negative-g.com/nolimits/no%20limits%20defunct%20coasters.htm 1 Dagens agenda Talrepresentation Typkonvertering Sekvens
PARITETSKONTROLL. Om generatorn i vidstående exempel avkänner ett jämt antal ettor ger den en nolla ut. Detta innebär att överföringen
PARITETSKONTROLL Paritetskontroll (likhetskontroll) användes för att kontrollera att dataordet inte förändrats på sin väg via överföringsledningarna, från ett ställe till ett annat. Antag att man vill
Binär kodning. Binära koder. Tal och talsystem positionssystem för basen 10. Begrepp. Begrepp Tal och talsystem Talomvandling ASCII-kod NBCD Gray-kod
Binära koer Dagens föreläsning: Läroboken kapitel 3 Ur innehållet: Grunläggane binära koer Talomvanlingar Begrepp Tal och talsystem Talomvanling ASCII-ko NBCD Gray-ko 2 Begrepp begrepp betyelse exempel...
matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG
matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma
Övningsblad 1.1 A. Tallinjer med positiva tal. 1 Skriv det tal som motsvaras av bokstaven på tallinjen.
Övningsblad 1.1 A Tallinjer med positiva tal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 5 10 0 10 20 A = B = C = D = E = F = G H I J K L 30 40 50 100 G = H = I = J = K = L =
Översikt, kursinnehåll
Översikt, kursinnehåll Specifikation av digitala funktioner och system Digitala byggelement Kombinatoriska system Digital Aritmetik Synkrona system och tillståndsmaskiner Asynkrona system och tillståndsmaskiner
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
KW ht-17. Övningsuppgifter
Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal
Per Holm Lågnivåprogrammering 2014/15 24 / 177. int och double = = 2, 147, 483, 647
Lågnivåprogrammering Föreläsning 2 Lågnivåprogrammering Förberedelse inför laboration 2. Maskinspråk, assemblerspråk Talrepresentation En enkel dator, komponenter Instruktionsformat, instruktionscykel
F3 Datarepresentation teckenkodning och datakompression EDAA05 Datorer i system! Roger Henriksson!
Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression EDAA05 Roger Henriksson Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). Baudot 1874, Murray 1901 2 EBCDIC ASCII Extended
Min trettonåriga dotter Nathalie och andra som är intresserade av matematikens elementa
1999-07-25 Kent Lund Till Ämne Min trettonåriga dotter Nathalie och andra som är intresserade av matematikens elementa Om siffror och tal 1. Siffror och tal Taltecknen 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 kallas
Inledning. Statistisk Programmering. UNIVAC 1107 (sextio- och sjuttiotal) Hålkorten. Att använda dator
Inledning Statistisk Programmering Att använda dator Datorernas utveckling sen 1970 har revolutionerat den statistiska vetenskapen! Göran Broström gb@statumuse Statistiska institutionen Umeå universitet
F3 Datarepresentation teckenkodning och datakompression
Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). EDAA05 Roger Henriksson Jonas Wisbrant Baudot 1874, Murray 1901 2
Mål Aritmetik. Provet omfattar sidorna 6 41 och (kap 1 och 7) i Matte Direkt år 8.
Mål Aritmetik Provet omfattar sidorna 6 41 och 206-223 (kap 1 och 7) i Matte Direkt år 8. Repetition: Repetitionsuppgifter 1 och 7, läxa 1-6 och 27-28 (s. 226 233 och s. 262-264) samt andra övningsuppgifter
IE1204 Digital Design
IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar F7 F8 Ö4 F9 Ö5 Multiplexor KK2 LAB2 Låskretsar, vippor, FSM
Grundläggande Datorteknik Digital- och datorteknik
Grundläggande Datorteknik Digital- och datorteknik Kursens mål: Fatta hur en dator är uppbggd (HDW) Fatta hur du du programmerar den (SW) Fatta hur HDW o SW samverkar Digital teknik Dator teknik Grundläggande
Digital- och datorteknik
Digital- och datorteknik Föreläsning #8 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Grindnät för addition: Vi
Föreläsning i webbdesign. Bilder och färger. Rune Körnefors. Medieteknik. 2012 Rune Körnefors rune.kornefors@lnu.se
Föreläsning i webbdesign Bilder och färger Rune Körnefors Medieteknik 1 2012 Rune Körnefors rune.kornefors@lnu.se Exempel: Bilder på några webbsidor 2 Bildpunkt = pixel (picture element) Bilder (bitmap
Matematik klass 4. Vårterminen FACIT. Namn:
Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1
Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Manual matematiska strategier. Freja. Ettan
Manual matematiska strategier Freja Ordningstalen t.ex första, andra, tredje Ramsräkna framlänges och baklänges till 20 Mattebegrepp addition: svaret i en addition heter summa, subtraktion: svaret i en
Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =
n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Laboration Kombinatoriska kretsar
Laboration Kombinatoriska kretsar Digital Design IE1204/5 Observera! För att få laborera måste Du ha: bokat en laborationstid i bokningssystemet (Daisy). löst ditt personliga web-häfte med förkunskapsuppgifter
3-5 Miniräknaren Namn:
3-5 Miniräknaren Namn: Inledning Varför skall jag behöva jobba med en massa bråk, multiplikationstabeller och annat när det finns miniräknare som kan göra hela jobbet. Visst kan miniräknare göra mycket,
Digitala system EDI610 Elektro- och informationsteknik
Digitala system EDI610 Elektro- och informationsteknik Digitala System EDI610 Aktiv under hela första året, höst- och vår-termin Poäng 15.0 Godkännande; U,3,4,5 Under hösten i huvudsak Digitalteknik Under
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Digital Design IE1204
Digital Design IE1204 F5 Digital aritmetik I william@kth.se IE1204 Digital Design F1 F3 F2 F4 Ö1 Booles algebra, Grindar MOS-teknologi, minimering F5 F6 Ö2 Aritmetik Ö3 KK1 LAB1 Kombinatoriska kretsar
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Introduktion till programmering och Python Grundkurs i programmering med Python
Introduktion till programmering och Python Hösten 2009 Dagens lektion Vad är programmering? Vad är en dator? Filer Att tala med datorer En första titt på Python 2 Vad är programmering? 3 VAD ÄR PROGRAMMERING?
Block 2 Algebra och Diskret Matematik A. Följder, strängar och tal. Referenser. Inledning. 1. Följder
Block 2 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Följder 2. Rekursiva definitioner 3. Sigmanotation för summor 4. Strängar 5. Tal 6. Övningsuppgifter Referenser Följder, strängar
2-4: Bråktal addition-subtraktion. Namn:.
-: Bråktal addition-subtraktion. Namn:. Inledning I det här kapitlet skall du räkna med bråk. Det blir inte så stökigt som du tror, eftersom vi talar om bråk i matematisk mening. Du skall lära dig hur
Dagens agenda. Lagring & berarbetning av data. Filer och filformat Metadata Komprimering Kryptering Olika typer av data Filsystem Databaser
Lagring & berarbetning av data 1IK426 Introduktion till informationsteknik Patrik Brandt Filer och filformat Metadata Komprimering Kryptering Olika typer av data Filsystem Databaser Dagens agenda Filer
Datalogi I, grundkurs med Java 10p, 2D4112, Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera förs
Datalogi I, grundkurs med Java 10p, 2D4112, 2002-2003 Fiktiv tentamen, svar och lösningar och extra kommentarer till vissa uppgifter 1a) Dividera först talet 37 med 2. Använd heltalsdivision. Det ger kvoten
Talrepresentation. Heltal, positiva heltal (eng. integers)
Talrepresentation Ett tal kan representeras binärt på många sätt. De vanligaste taltyperna som skall representeras är: Heltal, positiva heltal (eng. integers) ett-komplementet, två-komplementet, sign-magnitude
CE_O3. Nios II. Inför lab nios2time
IS1200 Exempelsamling till övning CE_O3, 2015 CE_O3. Nios II. Inför lab nios2time 3.1. Logiska operationer (se uppgift 1.2 c) Repetera (eller lär dig) innebörden av de logiska operationerna "bitvis AND",
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som
Välkomna till NADA. Datalogi, grundkurs 1, 15hp. (Numerisk Analys och DAtalogi) och kursen. DA2001 (Föreläsning 1) Datalogi 1 Hösten / 28
Välkomna till NADA (Numerisk Analys och DAtalogi) och kursen Datalogi, grundkurs 1, 15hp DA2001 (Föreläsning 1) Datalogi 1 Hösten 2013 1 / 28 Kursansvarig Jag: Vahid Mosavat Lindstedsvägen 5, plan 5 Rum
5:2 Digitalteknik Boolesk algebra. Inledning OCH-funktionen
5:2 Digitalteknik Boolesk algebra. Inledning I en dator representeras det binära talsystemet med signaler i form av elektriska spänningar. 0 = 0 V (låg spänning), 1 = 5 V(hög spänning). Datorn kombinerar
c a OP b Digitalteknik och Datorarkitektur 5hp ALU Design Principle 1 - Simplicity favors regularity add $15, $8, $11
A basic -bit Select between various operations: OR, AND, XOR, and addition Full Adder Multiplexer Digitalteknik och Datorarkitektur hp Föreläsning : introduktion till MIPS-assembler - april 8 karlmarklund@ituuse