Shannon-Fano-Elias-kodning

Storlek: px
Starta visningen från sidan:

Download "Shannon-Fano-Elias-kodning"

Transkript

1 Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen F (i) definieras som F (i) = k i p(k) F (i) är en trappstegsfunktion där steget i k har höjden p(k). Betraktaäven den modifierade fördelningsfunktionen F (i) F (i) = k<i p(k)+ 1 2 p(i) Värdet av F (i) är mittpunktet på steget för i.

2 Datakompression fö 5 p.2 Shannon-Fano-Elias-kodning Eftersom alla sannolikheter är positiva är F (i) F (j) för i j. Alltså kan vi bestämma i om vi vet F (i). Värdet på F (i) kan användas som kodord för i. I allmänhet är dock F (i) ett reellt tal med en oändlig antal bitar i sin binärutveckling, så vi kan inte använda det exakta värdet som kodord. Om vi istället använder ett närmevärde med ändlig binärutveckling, hur stor noggrannhet måste vi använda, dvs hur många bitar måste vi ha i kodordet? Antag att vi trunkerar binärutvecklingen för F (i) till l i bitar (betecknat med F (i) li. Då gäller att F (i) F (i) li < 1 2 l i Om vi låter l i = log p(i) +1så är 1 2 l =2 l i =2 log p(i) 1 2 log p(i) 1 = p(i) i 2 = F (i) F (i 1)

3 Datakompression fö 5 p.3 Shannon-Fano-Elias-kodning Alltså ligger talet F (i) li i steget som motsvarar i och därför räcker det med l i = log p(i) +1bitar för att beskriva i. Är den konstruerade koden prefixfri? Antag att ett kodord är b 1 b 2...b l. Dessa bitar representerar intervallet [0.b 1 b 2...b l 0.b 1 b 2...b l + 1 ) För att koden ska vara prefixfri måste alla 2 l intervall vara disjunkta. Intervallet för kodordet till symbol i har längden 2 l i vilket är mindre än halva längden av motsvarande steg. Startpunkten på intervallet ligger i nedre halvan av steget. Detta betyder att slutpunkten på intervallet ligger under toppen av steget. Alltså är alla intervall disjunkta och koden är prefixfri.

4 Datakompression fö 5 p.4 Shannon-Fano-Elias-kodning Vad har koden för datatakt? Kodordsmedellängden blir l = p(i) l i = p(i) ( log p(i) +1) i i p(i) ( log p(i)+2)= p(i) log p(i)+2 p(i) i i i = H(X i )+2 Vi kodar bara en symbol i taget, så datatakten R = l. Koden är alltså lite sämre än t.ex. en huffmankod. Prestanda kan förbättras genom att man kodar flera symboler i taget. Detta leder oss till aritmetisk kodning.

5 Datakompression fö 5 p.5 Aritmetisk kodning Aritmetisk kodning är i princip en generalisering av Shannon-Fano-Elias-kodning till att koda symbolsekvenser istället för enstaka symboler. Antag att vi vill koda en sekvens x = x 1,x 2,...,x n. Man börjar med hela sannolikhetsintervallet [0, 1). I varje steg delar man in sitt intervall proportionellt enligt fördelningsfunktionen F (i) och väljer just det delintervall som motsvarar den symbol som kodas. Har vi en minneskälla gör man intervalluppdelningen enligt den betingade fördelningsfunktionen. Varje symbolsekvens av längd n identifierar unikt ett delintervall. Kodordet för sekvensen är ett tal i intervallet. Antal bitar i kodordet beror av intervallets storlek, så ett stort intervall (dvs en sekvens med hög sannolikhet) får ett kort kodord, medan ett litet intervall ger ett längre kodord.

6 Datakompression fö 5 p.6 Iterativ algoritm Antag att vi vill koda en sekvens x = x 1,x 2,...,x n. Vi betecknar den undre gränsen i motsvarande intervall med l (n) och den övre gränsen med u (n). Intervallgenereringen ges då iterativt av { l (n) = l (n 1) +(u (n 1) l (n 1) ) F (x n 1) u (n) = l (n 1) +(u (n 1) l (n 1) ) F (x n ) Startvärden är l (0) =0och u (0) =1. F (0) = 0 Intervallstorleken är förstås lika med sannolikheten för sekvensen u (n) l (n) = p(x)

7 Datakompression fö 5 p.7 Kodord Kodordet för ett intervall är den kortaste bitsekvens b 1 b 2...b k sådan att det binära talet 0.b 1 b 2...b k ligger i intervallet och att även alla andra tal som börjar med samma k bitar också ligger i intervallet. Givet ett binärt tal a i intervallet [0, 1) med k bitar 0.b 1 b 2...b k. Alla tal vars k första bitar är samma som för a ligger i intervallet [a, a + 1 ). 2 k Ett nödvändigt villlkor för att hela detta intervall ska ligga inom intervallet som hör till symbolsekvensen, är att det är mindre än eller lika stort som symbolsekvensintervallet, dvs p(x) 1 2 k k log p(x) Vi kan inte vara säkra på att det verkligen räcker med log p(x) bitar, eftersom vi inte kan placera ut dessa intervall på godtyckliga platser. Däremot kan man inse att det maximalt krävs en bit extra om man har otur. Kodordslängden l(x) för en sekvens x ges alltså av l(x) = log p(x) eller l(x) = log p(x) +1

8 Datakompression fö 5 p.8 Kodordsmedellängd l = p(x) l(x) x x x p(x) ( log p(x) +1) p(x) ( log p(x)+2)= x p(x) log p(x)+2 p(x) = H(X 1 X 2...X n )+2 Och den resulterande datatakten begränsas alltså uppåt av x R 1 n H(X 1X 2...X n )+ 2 n Detta är visserligen lite sämre än man skulle få med en utvidgad huffmankod, men huffmankoder är inte praktiskt användbara för stora n. Komplexiteten för en aritmetisk kod är å andra sidan oberoende av hur många symboler n som man kodar i taget.

9 Datakompression fö 5 p.9 Praktiska problem Vi har begränsad precision och kan inte lagra intervallgränser och sannolikheter med godtycklig noggrannhet. Vi vill kunna börja skicka bitar utan att vänta på att hela sekvensen med n symboler kodats. En lösning är att skicka bitar så snart vi är säkra på dem och att när detta görs skala om intervallet, så att vi maximalt utnyttjar den tillgängliga precisionen. Om den första biten i både den lägre och den övre gränsen är den samma måste även den biten i kodordet vara densamma. Då kan man skicka den biten och därefter skifta gränserna en bit, dvs skala om intervallstorleken med en faktor 2.

10 Datakompression fö 5 p.10 Fixpunktsaritmetik Aritmetisk kodning implementeras oftast med fixpunktsaritmetik. Antag att intervallgränserna l (n) och u (n) lagras som heltal med m bitars noggrannhet och att fördelningsfunktionen F (i) lagras som heltal med k bitars noggrannhet. Algoritmen kan då modifieras till l (n) = l (n 1) + (u(n 1) l (n 1) +1)F (x n 1) 2 k u (n) = l (n 1) + (u(n 1) l (n 1) +1)F (x n ) 2 k 1 Startvärden blir l (0) =0och u (0) =2 m 1.

11 Datakompression fö 5 p.11 Intervallskalning Fallen när vi ska göra intervallskalning blir: 1. Intervallet ligger helt inom [0, 2 m 1 1], dvs den mest signifikanta biten i både l (n) och u (n) är 0. Skifta ut mest signifikant bit ur l (n) och u (n) och skicka den. Skifta in 0 i l (n) och 1 i u (n). 2. Intervallet ligger helt inom [2 m 1, 2 m 1], dvs den mest signifikanta biten i både l (n) och u (n) är 1. Samma operationer som i fall 1. När vi har kodat våra n symboler avslutas kodordet genom att vi skickar alla m bitar i l (n). Koden kan visserligen bli en prefixkod även med färre bitar, men implementationen av avkodaren blir enklare om hela l skickas. För stora n blir de extra bitarna försumbara, dessutom måste man förmodligen ända packa bitarna i ett jämnt antal bytes.

12 Datakompression fö 5 p.12 Mer problem Tyvärr kan vi i vår algoritm hamna i problem, om den första biten i l hela tiden är 0 och den första biten i u är 1. I värsta fall hamnar vi i situationen att l = och u = Då kommer vår algoritm inte att fungera. Lyckligtvis kan vi komma runt detta problem. Om de två första bitarna i l blir 01 och de två första i u blir 10, kan vi göra ett bitskift, utan att skicka några bitar i kodordet. När sen de första bitarna i l och u blir detsamma kan vi förutom den biten även skicka en extra, inverterad bit, dvs vi är då säkra på om kodordet ska ha 01 eller 10.

13 Datakompression fö 5 p.13 Intervallskalning Vi får nu tre fall 1. Intervallet ligger helt inom [0, 2 m 1 1], dvs den mest signifikanta biten i både l (n) och u (n) är 0. Skifta ut mest signifikant bit ur l (n) och u (n) och skicka den. Skifta in 0 i l (n) och 1 i u (n). 2. Intervallet ligger helt inom [2 m 1, 2 m 1], dvs den mest signifikanta biten i både l (n) och u (n) är 1. Samma operationer som i fall Vi har inte fall 1 eller 2, men intervallet ligger helt inom [2 m 2, 2 m 1 +2 m 2 1], dvs de två mest signifikanta bitarna är 01 i l (n) och 10 i u (n). Skifta ut mest signifikant bit ur l (n) och u (n). Skifta in 0 i l (n) och 1 i u (n). Invertera de nya mest signifikanta bitarna i l (n) och u (n). Skicka inga bitar, men håll reda på hur många gånger vi gör omskalningar av den här typen. Nästa gång vi gör en omskalning av typen 1, skicka lika många 1:or extra som antalet omskalningar av typ 3. På samma sätt, nästa gång vi gör en omskalning av typ 2 så skickas lika många extra 0:or som antalet omskalningar av typ 3.

14 Datakompression fö 5 p.14 Krav på precisionen Vi måste använda en datatyp med minst m + k bitar för att få plats med delresultaten i beräkningarna. Vi ser också att det minsta intervall vi kan ha utan att någon omskalning görs har storleken 2 m 2 +1, vilket till exempel händer när l (n) =2 m 2 1 och u (n) =2 m 1. För att algoritmen ska fungera får aldrig u (n) bli mindre än l (n) (samma värde är tillåtet, när man skiftar ut bitar skiftas ju nollor in i l ochettoriniu). För att detta ska gälla måste alltså alla intervall i fördelningsfunktionen uppfylla (med en lätt överskattning) F (i) F (i 1) 2 k m+2 ; i =1,...,L Till exempel så måste m k +2om vi har något intervall av storlek 1.

15 Datakompression fö 5 p.15 Avkodning Starta avkodaren i samma tillstånd (dvs l =0och u =2 m 1) som kodaren. Inför t som de m första bitarna i bitströmmen (kodordet). I varje steg räknar vi ut talet (t l +1) 2k 1 u l +1 Jämför detta tal med F för att se vilket intervall detta motsvarar. Detta ger en avkodad symbol. Uppdatera l och u på samma sätt som i kodaren. Vi gör eventuellt ett antal skift (omskalningar). Varje gång vi skalar om l och u ska vi även uppdatera t på samma sätt (skifta ut den mest signifikanta biten, skifta in en ny bit från kodströmmen som minst signifikant bit samt, om det är en om skalning av typ 3, invertera den nya mest signifikanta biten.) Repetera tills hela sekvensen är avkodad. Observera att kodaren kan behöva skicka antalet symboler som sidoinformation, så att avkodaren vet när den ska sluta avkoda. Alternativt kan man införa en extra symbol i sitt alfabet, med lägsta möjliga sannolikhet, som används för att markera när sekvensen tar slut.

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12 Aritmetisk kodning Vi identifierar varje sekvens av källsymboler med ett tal i intervallet [0, 1). Vi gör det med hjälp av fördelningsfunktionen (cumulative distribution function) F. För enkelhets skull

Läs mer

Källkodning. Egenskaper hos koder. Några exempel

Källkodning. Egenskaper hos koder. Några exempel Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att

Läs mer

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts. Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)

Läs mer

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or. Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås

Läs mer

Adaptiv aritmetisk kodning

Adaptiv aritmetisk kodning Datakompression fö 8 p.1 Adaptiv aritmetisk kodning Aritmetisk kodning är väldigt enkel att göra adaptiv, eftersom vi bara behöver göra en adaptiv sannolikhetsmodell, medan själva kodaren är fix. Till

Läs mer

Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1

Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1 Datakompression fö 2 p.1 Krafts olikhet En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om N 2 l i 1 Bevis: Antag att vi har en trädkod. Låt l max =max{l

Läs mer

TSBK04 Datakompression. Övningsuppgifter

TSBK04 Datakompression. Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

TSBK04 Datakompression Övningsuppgifter

TSBK04 Datakompression Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga. Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka

Läs mer

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler

Läs mer

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts. Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar

Läs mer

Kompression av ljud och bild

Kompression av ljud och bild Kompression av ljud och bild Harald Nautsch harna@isy.liu.se ISY Informationskodning, Linköpings universitet http://www.icg.isy.liu.se/courses/tsbk35/ Kurslitteratur Rekommenderad bok: Khalid Sayood, Introduction

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer TSBK35 källkodning p.3/89 TSBK35 källkodning p.4/89 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Informationskodning, Linköpings

Läs mer

FLAC (Free Lossless Audio Coding)

FLAC (Free Lossless Audio Coding) Datakompression fö 9 p.1 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det

Läs mer

Datakompression. Harald Nautsch ISY Bildkodning, Linköpings universitet.

Datakompression. Harald Nautsch ISY Bildkodning, Linköpings universitet. Datakompression fö 1 p.1 Datakompression Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk04/ ISY Bildkodning, Linköpings universitet Datakompression fö 1 p.2 Kursinnehåll Källmodellering:

Läs mer

Kursinnehåll. Datakompression. Föreläsningar, preliminärt program. Examination

Kursinnehåll. Datakompression. Föreläsningar, preliminärt program. Examination Datakompression fö 1 p.3 Datakompression fö 1 p.4 Kursinnehåll Datakompression Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk04/ ISY Bildkodning, Linköpings universitet Källmodellering:

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k

Läs mer

Burrows-Wheelers transform

Burrows-Wheelers transform Datakompression fö 7 p.1 Burrows-Wheelers transform Transformen själv ger ingen kompression, men gör det lättare att koda signalen med en enkel kodare. Antag att vi vill koda en sekvens av längd n. Skapa

Läs mer

Träd och koder. Anders Björner KTH

Träd och koder. Anders Björner KTH 27 Träd och koder Anders Björner KTH 1. Inledning. Det är i flera sammanhang viktigt att representera information digitalt (d.v.s omvandla till sviter av nollor och ettor). Beroende på vilka villkor som

Läs mer

Prov i DAT 312: Algoritmer och datastrukturer för systemvetare

Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #2 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Talomvandling Principer för omvandling mellan olika talsystem:

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression TSBK35 fö 1 p.3 TSBK35 fö 1 p.4 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Bildkodning, Linköpings universitet Khalid Sayood,

Läs mer

Föreläsning 7. Felrättande koder

Föreläsning 7. Felrättande koder Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas

Läs mer

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen

En generell prediktiv kodare utnyttjar signalens utseende N steg tillbaka i tiden för kodningen, dvs vi kodar efter den betingade fördelningen Prediktiv kodning Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen för att få

Läs mer

DIGITALA TAL OCH BOOLESK ALGEBRA

DIGITALA TAL OCH BOOLESK ALGEBRA DIGITALA TAL OCH BOOLESK ALGEBRA Innehåll Talsystem och koder Aritmetik för inära tal Grundläggande logiska operationer Logiska grindar Definitioner i Boolesk algera Räknelagar BINÄRA TALSYSTEMET Binärt

Läs mer

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare

Linjär prediktion. Prediktiv kodning. Linjär prediktion. Prediktiv kodare och avkodare Prediktiv kodning Linjär prediktion Närliggande sampel i en signal är oftast starkt korrelerade med varandra, det kan därför vara en bra ide att försöka utnyttja denna korrelation (minnet) innan kvantiseringen

Läs mer

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M

LAB 1. FELANALYS. 1 Inledning. 2 Flyttal. 1.1 Innehåll. 2.1 Avrundningsenheten, µ, och maskinepsilon, ε M TANA21+22/ 5 juli 2016 LAB 1. FELANALYS 1 Inledning I laborationerna används matrishanteringsprogrammet MATLAB. som genomgående använder dubbel precision vid beräkningarna. 1.1 Innehåll Du ska 1. bestämma

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2

Bisektionsalgoritmen. Kapitel Kvadratroten ur 2 Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man

Läs mer

TSBK35 Kompression av ljud och bild

TSBK35 Kompression av ljud och bild TSBK35 Kompression av ljud och bild Övningshäfte 0 februari 013 Innehåll I Problem 1 1 Informationsteori................................ 1 Källkodning................................... 3 3 Kvantisering...................................

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #24 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Allmänt Behovet av processorinstruktioner för multiplikation

Läs mer

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python)

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken

Läs mer

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper

Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper Tentamen Programmeringsteknik II 2018-10-19 Skrivtid: 8:00 13:00 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Lägg uppgifterna i ordning. Skriv uppgiftsnummer

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

f (a) sin

f (a) sin Hur kan datorn eller räknedosan känna till värdet hos till exempel sin0.23 eller e 2.4? Denna fråga är berättigad samtidigt som ingen tror att apparaterna innehåller en gigantisk tabell. Svaret på frågan

Läs mer

Lösningsförslag till övningsuppgifter, del V

Lösningsförslag till övningsuppgifter, del V Lösningsförslag till övningsuppgifter, del V Obs! Preliminär version! Ö.1. (a) Vi kan lösa uppgiften genom att helt enkelt räkna ut avståndet mellan vart och ett av de ( 7 ) = 1 paren. Först noterar vi

Läs mer

Informationsteknologi Tom Smedsaas 19 augusti 2016

Informationsteknologi Tom Smedsaas 19 augusti 2016 Informationsteknologi Tom Smedsaas 19 augusti 016 VL-träd Definition Ett VL-träd är ett binärt sökträd där det för varje nod gäller att skillnaden i höjd mellan nodens vänster och höger subträd är högst

Läs mer

Föreläsning 9 Datastrukturer (DAT037)

Föreläsning 9 Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson!

F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Datorer i system! Roger Henriksson! F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Von Neumann-arkitekturen Gemensamt minne för programinstruktioner och data. Sekventiell exekvering av instruktionerna.

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Tentamen. TSEA22 Digitalteknik 5 juni, 2015, kl

Tentamen. TSEA22 Digitalteknik 5 juni, 2015, kl Tentamen TSEA22 Digitalteknik 5 juni, 2015, kl. 08.00-12.00 Tillåtna hjälpmedel: Inga. Ansvarig lärare: Mattias Krysander Visning av skrivningen sker mellan 10.00-10.30 den 22 juni på Datorteknik. Totalt

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal

Läs mer

Ekvivalensrelationer

Ekvivalensrelationer Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

F2 Datarepresentation talbaser, dataformat och teckenkodning

F2 Datarepresentation talbaser, dataformat och teckenkodning F2 Datarepresentation talbaser, dataformat och teckenkodning EDAA05 Roger Henriksson Jonas Wisbrant Datarepresentation I en dator lagras och behandlas all information i form av binära tal ettor och nollor.

Läs mer

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation Innehåll Föreläsning 11 Trie Sökträd Trie och Sökträd 356 357 Trie Ytterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat träd där barnen till

Läs mer

Detta ger oss att kanalkapaciteten för den ursprungliga kanalen är C = q 1 C 1 + q 2 C C =1 h ( ) 0.30.

Detta ger oss att kanalkapaciteten för den ursprungliga kanalen är C = q 1 C 1 + q 2 C C =1 h ( ) 0.30. Lösning på problem a) Kanalen är symmetrisk och vi gör nedanstående uppdelning av den. Vi får två starkt symmetriska kanaler vilkas kanalkapacitet ges av C och C 2. Kanalerna väljes med sannolikheterna

Läs mer

F3 Introduktion Stickprov

F3 Introduktion Stickprov Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Föreläsning 8: Aritmetik och stora heltal

Föreläsning 8: Aritmetik och stora heltal 2D1458, Problemlösning och programmering under press Föreläsning 8: Aritmetik och stora heltal Datum: 2006-11-06 Skribent(er): Elias Freider och Ulf Lundström Föreläsare: Per Austrin Den här föreläsningen

Läs mer

Kodning med distorsion

Kodning med distorsion Kodning med distorsion Vi har en signal x n, n = 1... N som ska kodas. Alfabetet är en delmängd av de reella talen A R. Alfabetet kan vara kontinuerligt. Om vi inte har kravet att den avkodade signalen

Läs mer

Datorsystemteknik DVG A03 Föreläsning 3

Datorsystemteknik DVG A03 Föreläsning 3 Datorsystemteknik DVG A03 Föreläsning 3 Datoraritmetik Större delen av materialet framtaget av :Jan Eric Larsson, Mats Brorsson och Mirec Novak IT-inst LTH Hur stora tal kan vi få med N bitar? Största

Läs mer

F3 Datarepresentation teckenkodning och datakompression EDAA05 Datorer i system! Roger Henriksson!

F3 Datarepresentation teckenkodning och datakompression EDAA05 Datorer i system! Roger Henriksson! Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression EDAA05 Roger Henriksson Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). Baudot 1874, Murray 1901 2 EBCDIC ASCII Extended

Läs mer

F3 Datarepresentation teckenkodning och datakompression

F3 Datarepresentation teckenkodning och datakompression Teckenkodning historik F3 Datarepresentation teckenkodning och datakompression Baudotkod 5-bitars kod för fjärrskrivare (teletype tty). EDAA05 Roger Henriksson Jonas Wisbrant Baudot 1874, Murray 1901 2

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Giriga algoritmer och dynamisk programmering

Giriga algoritmer och dynamisk programmering Föreläsning 1 Giriga algoritmer och dynamisk programmering Douglas Wikström KTH Stockholm popup-help@csc.kth.se Dagens citat Using the wrong algorithm to solve a problem is like trying to cut a steak with

Läs mer

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet

Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet Kontinuerliga funktioner. Ytterligare en ekvivalent formulering av supremumaxiomet är följande: SATS. (Intervallinkapslingssatsen) Låt I k = [a k, b k ], k = 1, 2,... vara en avtagande följd av slutna

Läs mer

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram

Linköpings Tekniska Högskola Instutitionen för Datavetenskap (IDA) Torbjörn Jonsson, Erik Nilsson Lab 2: Underprogram Mål Lab 2: Underprogram Följande laboration introducerar underprogram; procedurer, funktioner och operatorer. I denna laboration kommer du att lära dig: Hur man skriver underprogram och hur dessa anropas.

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud.

Digitalitet. Kontinuerlig. Direkt proportionerlig mot källan. Ex. sprittermometer. Elektrisk signal som representerar ljud. Analog Digitalitet Kontinuerlig Direkt proportionerlig mot källan Ex. sprittermometer Elektrisk signal som representerar ljud Diskret Digital Representation som siffror/symboler Ex. CD-skiva Varje siffra

Läs mer

TDDI16: Datastrukturer och algoritmer

TDDI16: Datastrukturer och algoritmer . TDDI16: Datastrukturer och algoritmer Lab 2: Knäcka lösenord Höstterminen 2018 2018-06-27 1 Upplägg Första delen av instruktionen, avsnitt 2 till 7, innehåller en fullständig beskrivning av problemet

Läs mer

Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45

Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Adderare Addition av två tal innebär att samma förfarande upprepas för varje position i talet. För varje position sakapas en summasiffra och en minnessiffra.

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Sökning och sortering

Sökning och sortering Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling

Läs mer

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:

Läs mer

DAB760: Språk och logik

DAB760: Språk och logik DAB76: Språk och logik /4: Finita automater och -7 reguljära uttryck Leif Grönqvist (leif.gronqvist@msi.vxu.se) Växjö Universitet (MSI) GSLT (Sveriges nationella forskarskola i språkteknologi) Göteborg

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Lägre gräns för sortering Count sort,

Läs mer

TDDC74 Programmering, abstraktion och modellering. Tentamen

TDDC74 Programmering, abstraktion och modellering. Tentamen AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari

Läs mer

1 Positivt definita och positivt semidefinita matriser

1 Positivt definita och positivt semidefinita matriser Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Föreläsninsanteckningar till föreläsning 3: Entropi

Föreläsninsanteckningar till föreläsning 3: Entropi Föreläsninsanteckningar till föreläsning 3: Entropi Johan Håstad, transkriberat av Pehr Söderman 2006-01-20 1 Entropi Entropi är, inom kryptografin, ett mått på informationsinnehållet i en slumpvariabel.

Läs mer

CE_O3. Nios II. Inför lab nios2time

CE_O3. Nios II. Inför lab nios2time IS1200 Exempelsamling till övning CE_O3, 2015 CE_O3. Nios II. Inför lab nios2time 3.1. Logiska operationer (se uppgift 1.2 c) Repetera (eller lär dig) innebörden av de logiska operationerna "bitvis AND",

Läs mer

Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller

Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller Översikt Linjär sökning Sökning Binär sökning Hashtabeller Programmering tillämpningar och datastrukturer 2 Linjär sökning Binärt sökträd Undersök ett element i taget tills du hittar det sökta Komplexitet

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1

Läs mer

Betingning och LOTS/LOTV

Betingning och LOTS/LOTV Betingning och LOTS/LOTV Johan Thim (johan.thim@liu.se 4 december 018 Det uppstod lite problem kring ett par uppgifter som hanterade betingning. Jag tror problemen är av lite olika karaktär, men det jag

Läs mer

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14...

ALA-a Innehåll RÄKNEÖVNING VECKA 7. 1 Lite teori Kapitel Kapitel Kapitel Kapitel 14... ALA-a 2005 Innehåll 1 Lite teori 3 RÄKNEÖVNING VECKA 7 1.1 Kapitel 7....................................... 3 1.2 Kapitel 12....................................... 3 1.3 Kapitel 13.......................................

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45

Adderare. Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Digitalteknik 7.5 hp distans: 4.6 Adderare 4.45 Adderare Addition av två tal innebär att samma förfarande upprepas för varje position i talet. För varje position sakapas en summasiffra oh en minnessiffra.

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Informationsteori. Repetition Kanalkapaciteten C. Repetition Källkodhastigheten R 2. Repetition Kanalkodhastigheten R 1. Huffmans algoritm: D-när kod

Informationsteori. Repetition Kanalkapaciteten C. Repetition Källkodhastigheten R 2. Repetition Kanalkodhastigheten R 1. Huffmans algoritm: D-när kod Informationsteori Repetition Kanalkapaciteten C Källkodare Kanalkodare X Kanal Mats Cedervall Mottagare vkodare Kanalavkodare Y Kanalkodningssatsen C =supi(x; Y ) p(x) Informationsteori, fl#7 1 Informationsteori,

Läs mer

if (n==null) { return null; } else { return new Node(n.data, copy(n.next));

if (n==null) { return null; } else { return new Node(n.data, copy(n.next)); Inledning I bilagor finns ett antal mer eller mindre ofullständiga klasser. Klassen List innehåller några grundläggande komponenter för att skapa och hantera enkellänkade listor av heltal. Listorna hålls

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Föreläsning 13. Dynamisk programmering

Föreläsning 13. Dynamisk programmering Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Uppgifter Dynamisk programmering Dynamisk programmering

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,

Läs mer

Föreläsningsanteckningar F6

Föreläsningsanteckningar F6 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,

Läs mer