Föreläsningsanteckningar F6
|
|
- Mikael Karlsson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en nod u i V till alla andra noder i V. Dijkstras algoritm löser effektivt fallet när man har en riktad/oriktad graf med bara positiva kanter. Dock fungerar den inte när man har en eller flera kanter som är negativa, då algoritmen hela tiden utökar det uppspännande trädet via den nod vars avstånd från startpunkten är minst. Den antar på så sätt att om du kommer till en nod a från nod b kommer det aldrig vara kortare att gå till a via en annan nod c istället. Bellman-Ford algoritmen kan dock hantera negativa kanter, och kan även användas för att hitta negativa cykler. Den fungerar på ett liknande sätt som Dijkstra, fast den går igenom alla kanter och minskar om möjligt avståndet mellan två noder u och v för varje kant i grafen: Algorithm 1: Bellman-Ford Input: En graf G(E, V) där E är en mängd kanter och V en mängd noder. Output: minsta avståndet som en funktion p for varje nod v i G(E, V) for varje kant (u, v) i E if (dist[u] + w(u, v) < dist[v] AND dist[u] is not infinite) dist[v] = dist[u] + w(u, v) p[v] = u Tidskomplexitet: O( V E ) Något som kan vara bra att fundera på när man implementerar Bellman-Ford är hur man ska hantera oändligheten: Ifall man strikt följer definitionen av oändligheten, dvs att - w(u,v) = kommer man inte kunna upptäcka negativa cykler! Det man istället borde göra är att låta alla tal över en viss gräns E representera oändligheten. Då gäller det dock att välja E tillräckligt lågt så att man undviker overflow men samtidigt tillräckligt högt så att dist(v) aldrig råkar bli större än eller lika med E utan att dist(v) egentligen ska vara oändligt. För att upptäcka negativa cykler kan man köra den inre for-loopen en extra gång efter att
2 algoritmen är klar; vi har redan kört den V gånger, vilket är det största antalet kanter som kan ligga på vägen mellan två noder. Ifall avståndet till en nod kan minskas med ännu en iteration betyder det att vi kan utöka en stig med en kant som redan finns i stigen, vars vikt är negativ så att summan av alla vikter över stigen minskas. Vi har då en negativ cykel! Vi observerar att tidskomplexiteten till Bellman-Ford är större än tidskomplexiteten till Dijkstra, som är O(log V E ), och att det skulle vara snabbare att köra Dijkstras algoritm om alla negativa vikter kunde tas bort på ett snabbt sätt, förutsatt att grafen från början inte har några negativa cykler. Kortaste vägen mellan alla par av noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från varje nod u i V till alla andra noder i V. Ett naivt sätt att räkna ut detta på är att köra Bellman-Ford algoritmen mellan alla par av noder vilket kommer ta O( V 2 E ) tid. Ifall man kunde köra Dijkstras algoritm skulle detta kunna göras på O( V E log V ) tid istället, något som kräver att vi först måste ta göra om alla negativa kanter till positiva! Johnsons algoritm gör detta på ett effektivt sätt: Man definierar en ny funktion h(u) = w'(u,v) som definierar den nya vikten på kanten mellan nod u och v. Sedan skapar man en ny nod s och lägger till kanter med vikt 0 mellan s och alla andra noder. Man beräknar sedan avståndet d(s, u) med Bellman-Ford för alla u i V och observerar att h(w) <= h(u) + wt(u,w) på grund av triangelolikheten. Detta ger 0 <= w(u,w) + h(u) h(w) = w'(u,w), alltså kommer alla nya vikter w' vara positiva. Tidskomplexiteten blir då O( V E + V E log V ) = O( V E log V ). Ett annat sätt att lösa problemet är med Floyd-Warshalls algoritm. Den definierar d k,u,v som det minsta avståndet från nod u till nod v, där bara k noder får användas utöver u och v. Definitionen görs rekursivt: d 0,u,v = w(u,v) d k,u,v = min(d k-1,u,v, d k-1,u,k + d k-1,k,v ) för alla k = 1,..., n det vill säga att d k,u,v bestäms genom att kolla om man kan få en kortare väg från u till v ifall man går genom noden k. Observera att w(u,v) har ett oändligt stort värde ifall det inte finns en kant från u till v. Samma gäller för d V,u,v ifall det inte finns någon stig från u till v. Det ursprungliga sättet att implementera Floyd-Warshall på är att använda en 3-dimensionell vektor för att representera d. Detta kommer uppenbarligen ta V 3 minne, och det är därför av intresse att man hittar ett smartare sätt att implementera algoritmen. Vi observerar att det enda index av k som används är k och k-1 (för olika värden av k), och att vi kan ersätta den 3-dimensionella vektorn med två stycken matriser istället. Den ena matrisen sparar värden från det förra värdet på k medans den andra sparar det nuvarande. Ännu en observation är att algoritmen hela tiden kommer läsa det gamla värdet och sedan skriva det nya värdet, i den ordningen. Vi kan därför använda bara 1 matris, eftersom vi aldrig kommer behöva det gamla värdet igen efter att vi eventuellt har skrivit över det! Algorithm 2: Floyd-Warshall
3 Input: En graf G(E, V) med kantfunktion w(u, v) Output: Kortaste vägen mellan alla par av noder och vägen i sig /*Initialize*/ foreach u V D[u, u] = 0 foreach v V D[u, v] = P[u, v] = null foreach (u, v) E D[u, v] = w(u, v) P[u, v] = u /*create d k,u,v */ for k = 1 to n foreach u V if D[u, k] < foreach v V if D[u, k] + D[k, v] D[u, v] D[u, v] = D[u, v] P[u, v] = P[u, v] else D[u, v] = D[u, k] + D[k, v] D[u, v] = P[k, v] return (D, P) Tidskomplexiteten är O( V 3 ). När ska man använda viken algoritm? Ifall vi har en gles graf kan det vara värt att använda Johnons algoritm istället för Floyd- Warshalls. Mer specifikt, ifall E < V 2 /log V. Eulercykler och stigar En Eulercykel är en cykel i en graf som passerar varje kant en gång. En eulerstig är som en Eulercykel, fast start- och slutnoden ej behöver vara den samma. Observera skillnaden på en Eulercykel och en Hamiltoncykel: En Hamiltoncykel är en cykel i en graf där varje nod finns med en gång. Att hitta en sådan cykel är ett NP-fullständigt problem. För att en Eulercykel ska finnas i en graf måste följande villkor uppfyllas: Alla kanter i grafen måste vara sammanhängande I en oriktad graf måste varje nod ha ett jämnt antal kanter I en riktad graf måste varje nod ha lika många inkommande kanter som utgående dito. Följande villkor är tillräckliga för att det ska finnas en Eulerstig. Observera att det kan finnas en Eulerstig i en graf där det inte kan finnas en Eulercykel, i så fall gäller: Alla kanter i grafen måste vara sammanhängande
4 I en oriktad graf får max två noder ha udda valens, resten av noderna måste ha jämn valens. I en riktad graf måste antal inkommande kanter vara lika med antal utgående kanter för alla noder, förutom max en nod där antal inkommande kanter är en mer än antal utgående kanter, och max en nod där antal utgående kanter är en mer än antal ingående dito. Det går därför att på O( E ) tid kolla om en graf innehåller en Eulercykel/stig. Algoritmen för att hitta en Eulercykel/Eulerstig delas upp i två steg, en stigfinnare och en kontrollant: Stigfinnaren börjar på en godtycklig nod (om vi vill hitta en Eulercykel) eller på startnoden (ifall man vill hitta en Eulerstig). Sedan väljer man en godtycklig kant att traversera och markerar denna kanten som använd. Detta görs om ända tills det inte längre är möjligt att fortsätta. Enligt villkoren ovan befinner sig då algoritmen i samma nod som startnoden (för Eulercykler) eller i slutnoden (för Eulerstigar). Vi får då en serie kanter S = {e 1, e 2,..., e k } Kontrollanten traverserar över S. Ifall den upptäcker att någon kant e från någon nod v inte är markerad som använd startar den Stigfinnaren igen från nod v, över e, och "klistrar in" den returnerade stigen S' = {f 1, f 2,..., f m } på rätt ställe i S, så att man får S = {e 1, e 2,..., e i, f 1, f 2,..., f m, e i+1,...e k }. Flöde i grafer Att hitta det största möjliga flödet i en riktad och viktad graf går att göra med Ford- Fulkerssons algoritm ifall grafen är bipartit. Ofta använder man Ford-Fulkerssons algoritm för att hitta minsta bipartita matchningen i en viktad bipartit graf. Ford Fulkerssons algoritm görs i två steg: Man försöker hitta en stig som ökar flödet genom grafen, sedan uppdaterar man grafen och flödet. När man inte längre kan hitta en sådan stig har man hittat ett maximalt flöde! Algorithm 3: Ford-Fulkersson Input: En graf G(E, V) där E är en mängd kanter och V en mängd noder. Output: Minimala flödet genom grafen och om så önskas kanterna och deras respektive flöde. foreach kant (u,v) E r[w][v] = w(u, v) while C = getpath() V = min(w((u, v) C)) for (u, v) = C r[u][v] = V r[v][u]+ = V Tidskomplexiteten till algoritmen ifall alla vikter är heltal är O( E *f), där f är det maximala flödet i grafen. Ifall vikterna är irrationella tal är tyvärr inte Ford-Fulkersson ens garanterad
5 att avslutas. Ford-Fulkerssons algoritm använder sig oftast av en djupet-först sökning för att hitta utökande stigen i getpath(). Detta kan dock innebära problem i vissa specialfall, särskilt när bredden-först sökningen av någon orsak ständigt hittar stigar i grafen med låg kapacitet innan de stigarna med högre kapacitet. Edmonds-Karp är en variant av Ford-Fulkerssons algoritm som istället använder en bredden-först först sökning, och har en tidskomplexitet på O( V E 2 ).
Föreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Grafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm
Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat
Föreläsning 2. Kortaste vägar i grafer.
Föreläsning 2. Kortaste vägar i grafer. Problem: KORTASTE VÄGAR Den enklaste varianten är om vi inte har kantvikter och kortaste väg är en väg med såfåkanter som möjligt. Indata: En riktad graf G och en
Föreläsning 5: Dynamisk programmering
Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall
TNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
Föreläsning 2. Kortaste vägar i grafer.
Föreläsning 2. Kortaste vägar i grafer. Problem: KORTASTE VÄGAR Den enklaste varianten är om vi inte har kantvikter och kortaste väg är en väg med såfåkanter som möjligt. Indata: En riktad graf G och en
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Datastrukturer. föreläsning 8. Lecture 6 1
atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.
Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer
Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)
Föreläsning 2: Grafer. Exempel på graf
Föreläsning 2: Grafer Vad är en graf? Terminologi Representationer Genomgång av hörnen i en graf Kortaste väg-problemet Exempel på graf Falun Uppsala Karlstad Västerås Stockholm Eskilstuna Örebro En graf
Föreläsning 12+13: Approximationsalgoritmer
Föreläsning 12+13: Approximationsalgoritmer Många av de NP-fullständiga problemen är från början optimeringsproblem: TSP, Graph Coloring, Vertex Cover etc. Man tror att P NP och att det alltså inte går
Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer
Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Kaliningrad) låg vid bägge sidor av floden Pregel samt på
Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf
Föreläsning 4: Giriga algoritmer. Giriga algoritmer
Föreläsning 4: Giriga algoritmer Giriga algoritmer Denna typ av algoritmer arbetar efter följande princip: Gör i varje situation det som är lokalt optimalt, d.v.s. bäst för stunden. Några exempel vi redan
I en matchning ligger varje hörn i högst en kant. I en stig ligger varje hörn i högst två kanter.
26.2-9 Antag att rätt lösning är att dela upp V i V 1 och V 2 (V 1 V 2 =, V 1 V 2 = V ). Antal kanter vi måste skära är då det minsta snittet mellan v 1 och v 2, där v 1 är ett godtyckligt hörn i V 1 och
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Föreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller
N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.
Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 18 november 2015 Anton Grensjö ADK Övning 10 18 november 2015 1 / 20 Översikt Kursplanering Ö9: NP-fullständighetsbevis
Avancerad Problemlösning och Programmering i Praktiken
Avancerad Problemlösning och Programmering i Praktiken Grafalgoritmer II High Performance Computing Center North (HPC2N) Grafrepresentation Igår: Grafrepresentation DFS BFS Kortaste vägen MST Kortaste
Lösningsförslag för tentamen i Datastrukturer (DAT036) från
Lösningsförslag för tentamen i Datastrukturer (DAT036) från 2011-12-16 Nils Anders Danielsson 1. Låt oss benämna indatalistan strängar. Vi kan börja med att beräkna varje strängs frekvens genom att använda
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Efternamn förnamn ååmmdd kodnr
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn ååmmdd kodnr Lösning till kontrollskrivning 5A, den 15 maj 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel
Datastrukturer. föreläsning 8. Maps 1
Datastrukturer föreläsning 8 Maps 1 Att hitta den kortaste vägen 0 8 A 4 2 8 B 7 2 C 1 D 2 5 3 9 8 E F 5 3 Lecture 6 2 Viktade grafer I en viktad graf tillordnar vi ett tal till varje båge. Detta tal kallas
Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
Trafiksimulering: Grafalgoritmer
1 (38) Trafiksimulering: Grafalgoritmer Michael Hanke Skolan för teknikvetenskap SF1538 Projekt i simuleringsteknik 2 (38) Introduktion Varför grafalgoritmer? Grafer möjliggör en enkel och systematisk
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 5A, den 15 oktber 2013, kl 09.00-10.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
n (log n) Division Analysera skolboksalgoritmen för division (trappdivision). Använd bitkostnad.
Algoritmer och Komplexitet ht 08. Övning 1 Algoritmanalys Ordo Jämför följande par av funktioner med avseende på hur dom växer då n växer. Tala i varje fall om ifall f(n) Θ(g(n)), f(n) O(g(n)) eller f(n)
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 4 Anton Grensjö grensjo@csc.kth.se 25 september 215 Anton Grensjö ADK Övning 4 25 september 215 1 / 28 Översikt Kursplanering F9: Dynamisk programmering
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
729G04 - Diskret matematik. Lektion 4
729G04 - Diskret matematik. Lektion 4 Ett generellt råd är att rita upp noder och bågar för graferna nedan. 1 Uppgifter 1.1 Vägar, stigar och annat 1. Vi ges den oriktade grafen G=(V,E), V = {a, b, c,
Datastrukturer. föreläsning 7. Maps 1
Datastrukturer föreläsning 7 Maps 1 Grafer Maps 2 Grafer ett exempel En oriktad graf: Noderna är flygplatser (trebokstavskombinationer) Det finns en båge mellan två noder omm det finns en flyglinje mellan
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Dekomposition och dynamisk programmering
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 3 Dekomposition och dynamisk programmering Max och min med dekomposition I vektorn v[1..n] ligger n tal. Konstruera en dekompositionsalgoritm
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150112 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
Ekvivalensrelationer
Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd
Föreläsning 4: Kombinatorisk sökning
DD2458, Problemlösning och programmering under press Föreläsning 4: Kombinatorisk sökning Datum: 2009-09-25 Skribent(er): Kristina Nylander, Dennis Ekblom, Marcus Öman Föreläsare: Fredrik Niemelä 1 Introduktion
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 09:00 14:00
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160402 kl. 09:00 14:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. *** OBS ***
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Föreläsning 9: Talteori
DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2007-11-13 Skribent(er): Niklas Lindbom och Daniel Walldin Föreläsare: Per Austrin Den här föreläsningen behandlar modulär
Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?
Formalisering av rimlig tid Föreläsning 7+8: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Efternamn förnamn pnr kodnr
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr kodnr Lösning till kontrollskrivning 5A, 21 maj 2015, 13.15 14.15, i SF1610 Diskret matematik för CINTE, CMETE mfl. Inga hjälpmedel tillåtna.
Optimering Kruskal s algoritm Prim-Jarník s algoritm
Optimering Kruskal s Prim-Jarník s 0.7 1.3 0.5 0.3 2.1 0.7 1.3 0.5 0.3 2.1 Viktad graf raf där varje kant har en vikt Vikterna kan motsvara Kostnad Avstånd Tidsåtgång ur hittar man kortaste vägen från
Tentamen, EDA501/EDAA20 Programmering M MD W BK L
LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, EDA501/EDAA20 Programmering M MD W BK L 2017 05 31, 8.00 13.00 Anvisningar: Preliminärt ger uppgifterna 9 + 12 + 10 + 9 = 40 poäng.
Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform
Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna
Några svar till TDDC70/91 Datastrukturer och algoritmer
Några svar till TDDC70/91 Datastrukturer och algoritmer 2011--18 Följande är lösningsskisser och svar till uppgifterna på tentan. Lösningarna som ges här ska bara ses som vägledning och är oftast inte
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om grafer Mikael Hindgren 26 september 2018 roarna i Königsberg De sju broarna i Königsberg (nuvarande Kaliningrad) på 1700-talet: (a) Königsberg 1652 (b) Graf
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
729G04 - Diskret matematik. Lektion 4
729G04 - Diskret matematik. Lektion 4 1 Lösningsförslag 1.1 Vägar, stigar och annat 1. Vi ges den oriktade grafen G=(V,E), V = {a, b, c, d, f, g, h, i, j}, E = {{a, b}, {b, c}, {a, c}, {f, g}, {c, d},
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 9 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag Bevis av NP-fullständighet Labbteoriredovisning inför labb 4 2 Teori Teori När vi talar om NP-fullständighet
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
F11. Läsanvisning: kap 10 + dessa OH. Kruskals algoritm kortaste vägar en till alla
F11 Läsanvisning: kap 10 + dessa OH Kruskals algoritm kortaste vägar en till alla Dijkstras algoritm (Den här föreläsningen är också delvis samma som en från algoritmkursen därav språkvalet.) För lab 3:
Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.
Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.
Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås
Introduktion till programmering SMD180. Föreläsning 9: Tupler
Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
(6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer
Föreläsning 13. Dynamisk programmering
Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Dynamisk programmering Dynamisk programmering används typiskt
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 12 november 2015 Anton Grensjö ADK Övning 8 12 november 2015 1 / 21 Översikt Kursplanering Ö8: Mästarprov 1, oavgörbarhet
Datastrukturer. föreläsning 7. Maps 1
Datastrukturer föreläsning 7 Maps 1 Hashtabeller 0 1 2 3 025-612-0001 4 451-229-0004 981-101-0004 Maps 2 Kollisioner vad gör man? Använder hinkar ( hashing in buckets, chaining ) Cellen med index i innehåller
Föreläsning 13. Dynamisk programmering
Föreläsning 13 Dynamisk programmering Föreläsning 13 Dynamisk programmering Fibonacci Myntväxling Floyd-Warshall Kappsäck Handelsresandeproblemet Uppgifter Dynamisk programmering Dynamisk programmering
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 1 Anton Grensjö grensjo@csc.kth.se 14 september 2015 Anton Grensjö ADK Övning 1 14 september 2015 1 / 22 Översikt Kursplanering F1: Introduktion, algoritmanalys
Källkodning. Egenskaper hos koder. Några exempel
Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att
Kapitel 9: Grafalgoritmer
Kapitel 9: Grafalgoritmer En graf G = (V, E) karakteriseras av två mängder en ändlig icke-tom mängd V av noder (vertex) en mängd E av bågar (edges eller arcs) varje båge är ett par (v, w), där v, w är