TNK049 Optimeringslära

Storlek: px
Starta visningen från sidan:

Download "TNK049 Optimeringslära"

Transkript

1 TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem

2 Agenda Terminologi för grafer/nätverk (kap 8.2) Billigaste uppspännande träd (kap 8.) Billigaste väg (kap 8.4) Projektnätverk (8.5) Minkostnadsflödesproblem (kap 8.6) 2

3 Graf: Relation mellan Noder (vertices, nodes) Graf/Nätverk Nodmängd N = n, n 2, n, n 4. Bågar (edges, arcs) Bågmängd B = b, b 2, b, b 4, b 5. Båglista b = n, n 2, b 2 = n, n, b = n 2, n, alternativt: b =,2, b 2 =,, b = 2,, n b b b 2 n 2 n b 4 b 5 n 4 Start- och slutnod Nodnummer för start- och slutnod Nätverk: Graf med data för noder/bågar Kapacitet, kostnad, flödesstyrkor etc. Snitt (cut) Mängd bågar som delar N i två delar

4 Oriktad graf (Undirected graph) Oriktad/Riktad graf Riktad graf (Directed graph) Oriktade bågar (edges) Valens (valence) Antal bågar som ansluter till noden Kedja/Väg (chain/path) Sekvens av oriktade bågar Cykel (cycle) Kedja med samma start/slutnod Sammanhängande graf (connected graph) En kedja mellan varje par av noder Träd (tree) Sammanhängde graf utan cykler Uppspännande träd (spanning tree) Träd som omfattar alla noder i grafen Riktade bågar (arcs) Väg/Rutt (path/route) Sekvens av bågar i framåtriktningen Kedja (chain) Sekvens av bågar utan riktningshänsyn Riktad cykel (directed cycle) Väg med samma start/slutnod Acyklisk graf (acyclic graph) Innehåller ingen riktad cykel Starkt sammanhängande graf (strongly connected graph) En rutt mellan varje par av noder 4

5 Definieras som: Tudelad (bipartit) graf Noderna kan delas upp i två mängder så att alla bågar går mellan den ena och den andra nodmängden. dvs Det finns ett snitt som alla bågar passerar. Matchningsproblem 5

6 Algebraisk grafrepresentation Nodmatris om båge går från nod i till nod j annars Anslutningsmatris Noder som rader; Bågar som kolumner om båge j börjar i nod i om båge j slutar i nod i annars a ij a ij N A n n n 2 n 4 b b b 5 b 4 b 2 Glesa matriser! Använd smart representation. 6

7 Billigaste uppspännande träd Minimum Spanning Tree (MST) Välj ut en delmängd av bågarna i grafen så att de tillsammans bildar ett uppspännande träd, där summan av bågkostnaderna är minimal. Egenskaper hos ett uppspännande träd n noder ger n bågar Minst två noder med valens = Adderas en båge (till ett träd) bildas en unik cykel Varje par av noder (i ett träd) kopplade via en (unik) kedja c k 7

8 Metoder för billigaste uppspännande träd Kruskals algoritm för glesa grafer (956) Formell beskrivning, boken sid 88.. Betrakta alla bågar som ej avsökta.. Avsök billigaste kvarvarande båge. Om den bildar en cykel, gå till Annars, lägg till den till trädet 2. Om n- bågar i trädet klar Annars gå till Prims algoritm för täta grafer (957) Formell beskrivning, boken sid TNK49 Optimeringslära

9 Billigaste uppspännande träd (Kruskal) 2 5 Lägst index först! Cykel bildas! 2 T = {(,4); (,); (,2); (4,6); (4,5); (5,7)} Lägst index först, men cykel bildas! Avbryt! Trädet innehåller 7 bågar! 6 7 9

10 Billigaste uppspännande träd (Prim) Startnod. Lägst index först! T = {(,4); (,); (,2); (4,6); (4,5); (5,7)} Här blev det samma träd som med Kruskals algoritm. Ibland får man dock olika träd, men alltid samma minimala pris. Vilket? Avbryt! Trädet innehåller 7 bågar! 6 7

11 Billigaste väg/shortest Path (SP) Givet ett riktat nätverk med kostnader (avstånd, restider) för varje båge, finn billigaste (kortaste, snabbaste) väg mellan givna startnod(er) och slutnod(er). En startnod till en slutnod Individuell vägplanering Alternativ En startnod till alla slutnoder o Utryckningsvägar från brandstationen. Alla noder till alla andra o Trafikplanering

12 Billigaste väg kan formuleras som ett LP-problem Hitta billigaste väg från till 5 Varje båge som används orsakar kostnad Antag inga cykler med negativ kostnad, c ij <. Problemet kan formuleras som ett minkostnadsflödesproblem Flöde av en enhet skickas från till 5 Multiplicera flödet på varje båge, med bågkostnaden Kan formuleras som ett LP Problemet kan lösas med simplexmetoden! Effektivare metoder finns! 2 4 min x då x x x24 x2 4x5 x x ij ij 2 x 2 x x, heltal x x x x 2 2 x ij flödet på båge ( i, j) Här ekvivalent med: x ij x x om( i, j)används annars 5 5 x x x x x x,( i, j) B, där B är bågmängden Ej nödvändigt (se nästa Fö)

13 Bellmans ekvationer Acykliska nätverk kan ritas på en linje så att inga bågar går bakåt 8 8 s t s t 6 4 I acykliska nätverk kan billigaste väg bestämmas med Bellmans ekvationer: Bestäm successivt nodpriset y j, som är kostnaden från stardnod till nod j som y j min i ( i, j) { y c : B i ij } y 5 y Exempel: y 5 c 57 c 7 7 y 7 min{ y c7, y5 57} 7 c

14 4 Edsger W. Dijkstra 9 22 Eindhoven University, Nederländerna

15 Dijkstras algoritm (959) För nätverk med cykler krävs iterativa metoder. T ex Dijkstras algoritm. Formell beskrivning, boken sid 92.. Dela upp nodmängden N i avsökta A, och ej avsökta D. Sätt initialt A = och D = N. Märk alla noder med (föregångare, nodpris): För startnoden s gäller p s, y s =, ; för övriga noder p i, y i =,.. Hitta den ej avsökta nod i D, som har lägst nodpris. 2. Avsök nod i, dvs undersök alla utgående bågar från noden. Om y i + c ij < y j så har billigare väg till nod j hittats. Märk om nod j med p j, y j = i, y i + c ij. (* Om j A, flytta över j till D.). Flytta över nod i från D till A. 4. Avbryt om alla noder avsökta (A = N). Annars gå till * Kan bara inräffa om nätverket har negativa bågkostnader. Algoritmen kallas då Fords algoritm (956) 5

16 Projektnätverk/Aktivitetsnät Bågarna svarar mot aktiviteter. Noderna svarar mot händelser (då aktiviteter kan lösas av). Aktiviteter längs en kritisk linje. Kan ses som dyraste väg. Acyklisk Bellmans ekvationer duger. Vissa aktiviteter kan utföras parallellt. En del aktiviteter kan göras nästan när som helst. Exempel: Bygga hus. Genomföra stora ingenjörsprojekt. 6

17 Minkostnadsflödesproblem Vi vill skicka ett flöde till minsta kostnad. Noder Bågar Lösning Har en styrka (positiv om källa, negativ om sänka, noll annars). Styrkan anger volymen som ska skeppas ut/tas emot. Ibland okänd styrka, modelleras med superkälla/supersänka. Vi måste behålla nodbalans. Anger möjliga flöden i tid, rum och/eller tillstånd. Kan ha kostnader (eller intäkter). Kan ha kapaciteter. Kapaciteter nedåt kan användas för att modellera kontrakterade flöden. Nätverkssimplex, speciell variant av simplexmetoden (nästa föreläsning). 7

18 Exempel minkostnadsflödesproblem (Miniprojekt 2 handlar om modellering av det här slaget.) Ett företag har Två fabriker med produktionskapacitet på 5 enheter vardera. 2 kunder med efterfrågan respektive 75 enheter. Varorna kan levereras direkt eller via ett centrallager (dock ej direkt fabrik till kund 2 eller fabrik 2 till kund ). Fabrik 2s varor kan skickas via fabrik. Kund 2s varor kan skickas via kund. Mål Uppfyll efterfrågan och minimera företagets transportkostnad. Konstruera nätverket! 8

19 Inför Lektion 7 Uppgift 8.2: Billigaste uppspännande träd. Försök lösa med både Kruskals och Prims algoritm. Titta på exemplen ovan. Obs, det måste noga framgå vad som gjorts och i vilken ordning! Uppgift 8.4: Billigaste väg. 9

20

TNSL05 Optimering, Modellering och Planering. Föreläsning 5

TNSL05 Optimering, Modellering och Planering. Föreläsning 5 TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod. Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar

Läs mer

Föreläsningsanteckningar F6

Föreläsningsanteckningar F6 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en

Läs mer

Grafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).

Grafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

Föreläsning 5: Grafer Del 1

Föreläsning 5: Grafer Del 1 2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första

Läs mer

729G04 - Diskret matematik. Lektion 4

729G04 - Diskret matematik. Lektion 4 729G04 - Diskret matematik. Lektion 4 Ett generellt råd är att rita upp noder och bågar för graferna nedan. 1 Uppgifter 1.1 Vägar, stigar och annat 1. Vi ges den oriktade grafen G=(V,E), V = {a, b, c,

Läs mer

Föreläsning 7 Datastrukturer (DAT037)

Föreläsning 7 Datastrukturer (DAT037) Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning 6: Nätverksoptimering

Föreläsning 6: Nätverksoptimering Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem

Läs mer

Föreläsning 6 Datastrukturer (DAT037)

Föreläsning 6 Datastrukturer (DAT037) Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037

Läs mer

729G04 - Diskret matematik. Lektion 4

729G04 - Diskret matematik. Lektion 4 729G04 - Diskret matematik. Lektion 4 1 Lösningsförslag 1.1 Vägar, stigar och annat 1. Vi ges den oriktade grafen G=(V,E), V = {a, b, c, d, f, g, h, i, j}, E = {{a, b}, {b, c}, {a, c}, {f, g}, {c, d},

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 9

TNSL05 Optimering, Modellering och Planering. Föreläsning 9 TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 10

TNSL05 Optimering, Modellering och Planering. Föreläsning 10 TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF

Läs mer

1 Minkostnadsflödesproblem i nätverk

1 Minkostnadsflödesproblem i nätverk Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa

Läs mer

Kaliningrad) låg vid bägge sidor av floden Pregel samt på

Kaliningrad) låg vid bägge sidor av floden Pregel samt på Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

FÖRELÄSNING 11 DATALOGI I

FÖRELÄSNING 11 DATALOGI I Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Föreläsning 8 Datastrukturer (DAT037)

Föreläsning 8 Datastrukturer (DAT037) Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

Datastrukturer och Algoritmer D0041D

Datastrukturer och Algoritmer D0041D Luleå Tekniska Universitet 19 mars 2014 Laborationsrapport Laboration 3 Datastrukturer och Algoritmer D0041D Primms Algoritm Namn E-mail Magnus Björk magbjr-3@ltu.student.se Handledare Felix Hansson Primms

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Graphs (chapter 14) 1

Graphs (chapter 14) 1 Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får

Läs mer

Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.

Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång. Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,

Läs mer

Grafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm

Grafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

Föreläsning 6 Datastrukturer (DAT037)

Föreläsning 6 Datastrukturer (DAT037) Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j

Läs mer

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum

Läs mer

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12 1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver

Läs mer

Näst nästa gång: Nästa gång: mer grafer (kap 10) Grafer 1 1. ! uppspännande träd. ! minimala uppspännande träd. ! Prims algoritm. !

Näst nästa gång: Nästa gång: mer grafer (kap 10) Grafer 1 1. ! uppspännande träd. ! minimala uppspännande träd. ! Prims algoritm. ! F9 Läsanvisning: kap 10 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 4 Grafer En graf är en struktur av prickar förbundna med streck.

Läs mer

Föreläsning 2: Grafer. Exempel på graf

Föreläsning 2: Grafer. Exempel på graf Föreläsning 2: Grafer Vad är en graf? Terminologi Representationer Genomgång av hörnen i en graf Kortaste väg-problemet Exempel på graf Falun Uppsala Karlstad Västerås Stockholm Eskilstuna Örebro En graf

Läs mer

Optimering Kruskal s algoritm Prim-Jarník s algoritm

Optimering Kruskal s algoritm Prim-Jarník s algoritm Optimering Kruskal s Prim-Jarník s 0.7 1.3 0.5 0.3 2.1 0.7 1.3 0.5 0.3 2.1 Viktad graf raf där varje kant har en vikt Vikterna kan motsvara Kostnad Avstånd Tidsåtgång ur hittar man kortaste vägen från

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)

Läs mer

Datastrukturer. föreläsning 8. Lecture 6 1

Datastrukturer. föreläsning 8. Lecture 6 1 atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.

Läs mer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

Föreläsningsanteckningar S6 Grafteori

Föreläsningsanteckningar S6 Grafteori HT 009 Tobias Wrigstad Introduktion till grafteori På den här föreläsningen tar vi upp elementär grafteori och försöker introducera termer och begrepp som blir viktigare i senare kurser. Subjektivt tycker

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och

Läs mer

Prov i DAT 312: Algoritmer och datastrukturer för systemvetare

Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal

Läs mer

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform

Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Föreläsning 5: Dynamisk programmering

Föreläsning 5: Dynamisk programmering Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall

Läs mer

Kapitel 9: Grafalgoritmer

Kapitel 9: Grafalgoritmer Kapitel 9: Grafalgoritmer En graf G = (V, E) karakteriseras av två mängder en ändlig icke-tom mängd V av noder (vertex) en mängd E av bågar (edges eller arcs) varje båge är ett par (v, w), där v, w är

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 4

TNSL05 Optimering, Modellering och Planering. Föreläsning 4 TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden

Läs mer

träd dag graf båge och vikt Grafer definitioner och terminologi

träd dag graf båge och vikt Grafer definitioner och terminologi F9 Läsanvisning: kap 0 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och

Läs mer

Trafiksimulering: Grafalgoritmer

Trafiksimulering: Grafalgoritmer 1 (38) Trafiksimulering: Grafalgoritmer Michael Hanke Skolan för teknikvetenskap SF1538 Projekt i simuleringsteknik 2 (38) Introduktion Varför grafalgoritmer? Grafer möjliggör en enkel och systematisk

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t. 1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2015 08 25 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Tentamen MMG610 Diskret Matematik, GU

Tentamen MMG610 Diskret Matematik, GU Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,

Läs mer

Datastrukturer. föreläsning 8. Maps 1

Datastrukturer. föreläsning 8. Maps 1 Datastrukturer föreläsning 8 Maps 1 Att hitta den kortaste vägen 0 8 A 4 2 8 B 7 2 C 1 D 2 5 3 9 8 E F 5 3 Lecture 6 2 Viktade grafer I en viktad graf tillordnar vi ett tal till varje båge. Detta tal kallas

Läs mer

Hemuppgift 1, SF1861 Optimeringslära, VT 2017

Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,

Läs mer

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Algebra och Diskret Matematik A (svenska)

Algebra och Diskret Matematik A (svenska) MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer