Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
|
|
- Ann-Marie Ek
- för 6 år sedan
- Visningar:
Transkript
1 Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor: l ij x ij u ij Noddata för nod i: b i : källstyrka/sänkstyrka. (måste vara givet) Nodjämviktsvillkor: x ji x ij = b i för alla i N (in - ut) Krav på indata: i b i = 0. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 / Specialfall av kostnadsflödesproblemet Flöde i nätverk Sats Varje anslutningsmatris är fullständigt unimodulär. Slutsats Flödesproblem kan betraktas som LP-problem. Flödet blir automatiskt heltal. Obs: Inga andra bivillkor får finnas. Minkostnadsflödesproblemet Skicka efterfrågade mängder så billigt som möjligt. (i,j) B x ji l ij x ij u ij x ij = b i för alla (i, j) B för alla i N Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 / Specialfall av kostnadsflödesproblemet Maxflödesproblemet: Inför återbåge (t, s). Sätt c ts = och c ij = 0 för alla (i, j) B \ (ts). Sök cirkulerande flöde (inga källor eller sänkor). Billigaste väg-problemet: Minkostnadsflödesproblem med en källa och en sänka, båda av styrka ett. i = s b i = i = t 0 f ö l ij = 0 och u ij stor (men i praktiken ) för alla bågar. Riktade brevbärarproblemet: Cirkulerande kostnadsflödesproblem med undre gräns ett för alla bågar. max f x ji 0 x ij u ij för alla (i, j) B f fri 0, 5 0, 3 3 f i = s x ij = f i = t 0 f ö 0, 0, 5 0, 4 0, , 0, 6 6 för alla i N,M Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 3 / Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 4 /
2 Specialfall av kostnadsflödesproblemet Transportproblemet: Minkostnadsflödesproblem i tudelad graf. m x ij = s i m x ij = d j i =,... m j =,... n Kan ses som ett matrisproblem, där i står för rader och j för kolumner. Bivillkoren specificerar radsummor och kolumnsummor. (Eftersom detta är ett kostnadsflödesproblem blir lösningen heltal.) Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 5 / Utvidgning av kostnadsflödesproblemet Flervaruflöde: Flödet består av olika sorters varor med separat tillgång/efterfrågan men med gemensamma kapaciteter. Även för olika start- och slutnodsbundna signaler, som i telekomnät. Variabeldefinition: xij k = flöde av sort k i båge (i, j). cij k xij k (i,j) B k C x k ji xij k u ij k C l k ij x k ij u k ij x k ij = b k i för alla i N, k C för alla (i, j) B Bivillkorsmatrisen är ej fullständigt unimodulär. för alla (i, j) B, k C Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 7 / Specialfall av kostnadsflödesproblemet Tillordningsproblemet: Transportproblem med all tillgång och efterfrågan lika med ett. Varje person i skall göra en uppgift och varje uppgift j ska göras en gång. Variabeldefinition: om person i gör uppgift j. i =,... n j =,... n Lösningsmetod: Ungerska metoden. Baseras på LP-dualen. (Eftersom detta är ett kostnadsflödesproblem blir lösningen heltal.) Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 6 / Lösningsmetod för kostnadsflödesproblemet (i,j) B x ji l ij x ij u ij Simplexmetoden Baslösning: x ij = b i för alla (i, j) B för alla i N Icke-basvariabler: x ij = l ij eller x ij = u ij. (Övre och undre gränser behandlas implicit.) Hur många basvariabler? Ett av nodjämviktsvillkoren är redundant. En n n-matris vore linjärt beroende. Kan bara ha bas av dimension n. Alltså n basvariabler. En cykel motsvarar linjärt beroende. Alltså ingen cykel i basen. Slutsats: En bas motsvarar ett uppspännande träd. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 8 /
3 Simplexmetoden för kostnadsflödesproblemet En iteration: Basvariablerna ger ett uppspännande träd. Inkommande variabel bildar en unik cykel. Man vill skicka runt så mycket som möjligt i cykeln. Utgående variabel begränsar flödesändringen i cykeln. Den hamnar på övre eller undre gräns. Utgående variabel bryter upp cykeln. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 9 / Simplexmetoden för kostnadsflödesproblemet Simplexmetoden för kostnadsflödesproblemet Hur välja inkommande variabel? y: dualvariabler till nodjämviktsvillkoren. y i kallas nodpris för nod i. Reducerade kostnader: ĉ ij = c ij + y i y j. (Nod i till j: Jämför skillnaden i nodpris, y j y i, med direktvägen, c ij.) Minimering ĉ ij < 0 Båge (i, j) billig. Skicka så mycket som möjligt. Öka x ij. x ij = u ij är optimalt. ĉ ij > 0 Båge (i, j) dyr. Skicka så lite som möjligt. Minska x ij. x ij = l ij är optimalt. Optimalitetsvillkor ĉ ij < 0 x ij = u ij, (billig ickebas) ĉ ij > 0 x ij = l ij (dyr ickebas) samt l ij < x ij < u ij ĉ ij = 0 (bas). (Används för att räkna ut y.) Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 0 / Simplexmetoden för kostnadsflöde: Exempel 0. Finn tillåten startbas (träd).. Sätt y = 0. Beräkna resterande y via basträdet. (c ij = y j y i för alla basbågar.). Beräkna reducerade kostnader ĉ ij = c ij + y i y j för alla icke-basbågar. 3. Kontrollera optimalitet. Om optimum: Stopp. 4. Välj mest lovande variabel som inkommande. 5. Finn cykeln som bildas. 6. Ändra flödet i cykeln maximalt i önskad riktning. 7. Välj den variabel som begränsar ändringen som utgående variabel. 8. Gå till. Indata: 3 6,,0 3,, Startlösning Bågdata: c,u,x,, 3,,,, 5 5,,,, Totalkostnad: 8 4,,0 Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 / Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 /
4 Simplexmetoden för kostnadsflödesproblemet Busacker-Gowens metod Alternativ metod för kostnadsflödesproblem med en källa och en sänka: Känslighetsanalys Ändring av kostnad för icke-basbåge eller införande av ny båge: Beräkna ny reducerad kostnad, ĉ ij = c ij + y i y j och kontrollera optimalitet. Modifiering av maxflödesmetoden: Sök billigaste flödesökande väg i varje iteration. Pseudopolynomisk. Billigaste-maxflödesmetoden Busacker-Gowens metod kan finna billigaste maxflöde om man inte slutar förrän flödet är maximalt. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 3 / Tillordningsproblemet Varje person i skall göra en uppgift och varje uppgift j ska göras en gång. Variabeldefinition: om person i gör uppgift j. z = i =,... n j =,... n Metod: Formulera och lös LP-dualen. Arbeta med dualvariabler och reducerade kostnader. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 5 / Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 4 / Tillordningsproblemet: Lös LP-dualen z = LP-dual: max v = α i + Komplementaritetsvillkor: i =,... n j =,... n β j α i + β j c ij för alla (i, j). x ij (α i + β j c ij ) = 0 för alla (i, j). Metod: Lös dualen: Öka α och β, utan att överskrida duala bivillkoren. Försök sedan finna en tillåten primallösning som uppfyller komplementaritetsvillkoren. Ändra α och β om det inte går. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 6 /
5 Ungerska metoden för tillordningsproblemet Ungerska metoden för tillordningsproblemet Arbeta med reducerade kostnader: ĉ ij = c ij α i β j för alla (i, j). Duala bivillkoren (primal optimalitet): ĉ ij 0 för alla (i, j) Komplementaritetsvillkoren: ĉ ij x ij = 0 för alla (i, j) Optimalitetsvillkor: ĉ ij > 0 x ij = 0, x ij > 0 ĉ ij = 0 Tillåtna positioner: där ĉ ij = 0. Mål: Placera exakt en etta i varje rad och i varje kolumn på de tillåtna positionerna. Lös dualen. Sätt α i = 0 för alla i och β j = 0 för alla j (vilket ger ĉ ij = c ij ). Öka enstaka α i och β j så mycket som möjligt (utan att ĉ ij blir negativt). Kan en etta placeras i varje rad och kolumn på de tillåtna positionerna? Om ja, stopp. Om inte, ändra dualvariablerna i par: Öka α i och ska β j så att inget ĉ ij blir negativt. Gör detta så att nya tillåtna positioner, ĉ ij = 0, bildas, samtidigt som ĉ ij 0. Upprepa tills tillåten lösning fås. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 7 / Ungerska metoden för tillordningsproblemet Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 8 / Ungerska metoden för tillordningsproblemet Matris av reducerade kostnader, Ĉ. Stryk alla tillåtna positioner med sta möjliga antal streck. Sats Högsta antalet ettor som kan placeras ut är lika med sta antalet streck som behövs. Öka α i för ostrukna rader, och ska β j för strukna kolumner. Effekt: Ostrukna element skas, enkelt strukna element oförändrade, dubbelt strukna element ökas. ĉ ij skas inte för någon tillåten position. Inget ĉ ij blir negativt. Minst en ny tillåten position bildas. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 9 / 0. Starta med de ursprungliga kostnaderna (α = 0, β = 0).. Dra bort det sta elementet i varje rad från alla elementen i raden (öka α).. Dra bort sta elementet i varje kolumn från alla elementen i kolumnen (öka β). 3. Stryk alla nollor med sta möjliga antal streck. Om antalet streck är lika med n, finn tillåten lösning, och sluta. 4. Dra bort sta ostrukna element från alla ostrukna element och addera till alla dubbelt strukna element. (Öka α i för ostrukna rader, och ska β j för strukna kolumner.) Gå till 3. Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 0 /
6 Ungerska metoden: Exempel β ĉ ij = c ij α i β j Till slut återstår bara en nolla. α Ungerska metoden: Exempel Optimallösning: x = Person gör uppgift, person gör uppgift 3, person 3 gör uppgift 4, person 4 gör uppgift. Total kostnad: 7 Duallösning: α = (3, 6,, 5) β = (0,,, ) Kolla gärna starka dualsatsen: v = α i + Summan av dualvarialerna ska vara lika med totala kostnaden. β j Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 / Kaj Holmberg (LiU) TAOP86/TAOP33 Optimering september 08 /
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
Föreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.
Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: oktober 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
TNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta s Matematiska Institutionen Lösning till tentamen Optimeringslära 2014-01-15 Kaj Holmberg Lösningar/svar Uppgift 1 1a: (Detta problem
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 maj 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Föreläsning 6: Transportproblem (TP)
Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: oktober 01 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 20 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Lösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg.
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2015-01-14 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Givna data:
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet
Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Billigaste väg: Matematisk modell i vektor/matrisform. Billigaste väg: Matematisk modell i vektor/matrisform
Vägar: Bllgaste väg Bllgaste väg s t Indata: Rktad graf med bågkostnader c, start/slutnod s, t. Bllgaste väg-problemet: Fnn en väg från s tll t med mnmal kostnad. Kostnaden för en väg är summan av kostnaderna
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)