Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
|
|
- Emil Lindqvist
- för 9 år sedan
- Visningar:
Transkript
1 Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning 2 Simplexmetoden - Ulf Jönsson & Per Enqvist
2 Repetition av den geometriska Simplexmetoden Produktplaneringsproblemet maximera 200x + 400x 2 då 40 x + x 2 x + x 2 x k 0, k =, 2 x 2 40 c x 2 = 0.5x x Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist
3 Idén bakom Simplexmetoden är att söka iterativt utefter kanter till hörn med allt bättre målfunktionsvärde. Bestäm initial hörnpunkt Är hörnpunkten optimal? Ja KLART Nej Finn bättre intilliggande hörnpunkt Föreläsning 2 3 Simplexmetoden - Ulf Jönsson & Per Enqvist
4 Sökning med den geometriska simplexmetoden c x2 x2 c x d d 2 c d d d 20 0 d x x x c T d < 0 c T d < 0 c T d 2 > 0 c T d 2 > 0 välj riktning d 2 välj riktning d 2 c T d < 0 c T d 2 < 0 optimal HP Föreläsning 2 4 Simplexmetoden - Ulf Jönsson & Per Enqvist
5 Standardformen för produktplaneringsexemplet. maximera 200x + 400x 2 då 40 x + x 2 x + x 2 x k 0, k =, 2 = minimera 200x 400x 2 då 40 x + x 2 + x 3 = x + x 2 + x 4 = x k 0, k =, 2, 3, 4. Hur är hörnpunkter representerade i standardformen? Föreläsning 2 5 Simplexmetoden - Ulf Jönsson & Per Enqvist
6 Geometrisk tolkning för LP på standardform: 2D x 2 x 2 α α x β x Bivillkor: a x + a 2 x 2 = b. F är ett halv-oändligt (blått) eller ändligt linjesegment (rött) Det optimala ˆx = (0,α), (β, 0), eller så har problemet ingen ändlig lösning. Föreläsning 2 6 Simplexmetoden - Ulf Jönsson & Per Enqvist
7 Geometrisk tolkning för LP på standardform: 3D γ x 3 x α β x 2 Bivillkor: a x + a 2 x 2 + a 3 x 3 = b. F är skärningen av ett plan och den första kvadranten. (grönt) Det finns tre hörnpunkter x () = (α, 0, 0), x (2) = (0,β, 0), x (3) = (0, 0,γ), Föreläsning 2 7 Simplexmetoden - Ulf Jönsson & Per Enqvist
8 Geometrisk tolkning för LP på standardform: 3D x 3 γ β x α α2 x 2 Bivillkor: a x + a 2 x 2 + a 3 x 3 = b. a 2 x + a 22 x 2 + a 23 x 3 = b 2. F är skärningen av en linje och den första kvadranten (grön) Det finns två hörnpunkter x () = (α,β, 0), x (2) = (α 2, 0,γ), Notera: # nollskilda element i x (k) = # bivillkor, i dessa exempel. Föreläsning 2 8 Simplexmetoden - Ulf Jönsson & Per Enqvist
9 Produktionsplaneringsexemplet Bivillkoret i standardform är Ax = b där A = [a a 2 a 3 a 4 = 0 40 b = 0 Detta kan skrivas som 4 a k x k = a x + a 2 x 2 + a 3 x 3 + a 4 x 4 = b k=0 Om vi sätter t.ex. x 2 = x 3 = 0 så har vi att a x + a 4 x 4 = A β x β = b, där A β = [a a 4 = 0 40, x β = x x 4 Föreläsning 2 9 Simplexmetoden - Ulf Jönsson & Per Enqvist
10 Vi beräknar därefter x β = x x 4 = A β b = 40 5 Dessa värden på x och x 4, tillsammans med x 2 = x 3 = 0, ger en tillåten lösning, d.v.s., Ax = b, där (x,x 2 ) = (40, 0). Detta är en hörnpunkt. Övriga lösningar motsvarande kombinationer av två kolumner i A finns representerade i tabellen på nästa sida. Föreläsning 2 0 Simplexmetoden - Ulf Jönsson & Per Enqvist
11 Geometrisk illustration av baslösningarna x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x β A 2 β 3 x 2 β 3 (x, x 2 ) 2 3 (3,4) (2,4) (,4) (2,3) (,3) (,2) Det gäller allmänt att hörnpunkter svarar mot så kallade baslösningar. Föreläsning 2 Simplexmetoden - Ulf Jönsson & Per Enqvist
12 LP-problem på standardform minimera då n c j x j j= n a ij x j = b i, i =,...,m j= x j 0, j =,...,n = minimera c T x då Ax = b x 0 där A = a.... a n. [ = a... a n,b = b.,c = c.,x = x. a m... a mn b m c n x n Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist
13 Simplexalgoritmen För given basindexvektor och icke-basindexvektor β = (β,...,β m ) ν = (ν,...,ν l ), l = n m definierar vi A β = [a β... a βm, A ν = [a ν... a νl, c β = c β., x β = x β. c ν = c ν., x β = x ν. c βm x βm c νl x νl Föreläsning 2 3 Simplexmetoden - Ulf Jönsson & Per Enqvist
14 Definition. Baslösningen svarande mot β ges av A β x β = b x β = A β x β baslösningen är tillåten (TBL) om x β 0 En tillåten baslösning kallas icke-degenererad om x β > 0 En tillåten baslösning kallas degenererad om x βk = 0 för något index β k. Föreläsning 2 4 Simplexmetoden - Ulf Jönsson & Per Enqvist
15 Produktplaneringsexemplet x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x β A β x β ν x ν (3,4) (, 2) (2,4) (, 3) 0 (,4) (2,3) (,3) (,2) (2, 3) (, 4) (2, 4) (3, 4) 0 30 Villka baslösningar är tillåtna? Jämför med den geometriska tolkningen. Föreläsning 2 5 Simplexmetoden - Ulf Jönsson & Per Enqvist
16 Sats. Om det finns en optimal lösning så finns det en optimal tillåten baslösning. Satsen motiverar följande simplexalgoritm Bestäm initial TBL TBL optimal? Ja KLART Nej Byt bas De olika blocken kan implementeras med linjär algebraoperationer. Föreläsning 2 6 Simplexmetoden - Ulf Jönsson & Per Enqvist
17 Initial TBL β = β,..., β m ) ν = (ν,..., ν l ) Beräkna (y,r ν, b) A T β y = c β r ν = c ν A T ν y A β b = b r ν 0 Nej Ja Optimal lösning x = b, x ν = 0 z = y T b Tag ν q så att r ν q < 0 Lös A β ā k = a k ; k = ν q ā k 0 Obegränsat problem Lösning saknas ( ) b t max i = min ā ik > 0 ā ik ν = ν q, ν q = β p, β p = ν = b p ā pk Föreläsning 2 7 Simplexmetoden - Ulf Jönsson & Per Enqvist
18 Simplex för produktionsplaneringsexemplet Standardformen för produktplaneringsexemplet. minimera c T x då Ax = b x 0 där A = c T = 40 [ , 0 0 b = Vi vill lösa detta med simplex. När man har infört slackvariabler kan man visa att om man väljer dessa som startbasvariabler så bildar det en TBL. (Givet att b 0) Föreläsning 2 8 Simplexmetoden - Ulf Jönsson & Per Enqvist
19 Låt β = {3, 4} och ν = {, 2}, Simplex A β = 0 /40 /, A ν = 0 / / [ [ c T β = 0 0, c T ν = Då blir baslösningen x β = b = A β b = [ tillåten. Simplexmultiplikatorerna ges av ekvationen A T β y = c β och reducerade kostnader ges av r T ν = c T ν y T A ν, d.v.s. y = 0 [ T [ [, och r T 0 /40 / ν = [ = 0 / / Föreläsning 2 9 Simplexmetoden - Ulf Jönsson & Per Enqvist
20 Simplex Eftersom de reducerade kostnaderna är negativa så är den aktuella TBL inte optimal. r ν2 är minst, så låt x ν2 = x 2 bli ny basvariabel. Vilken variabel ska ut ur basen? [ b bestäms från A β b = b, d.v.s. b = A β b = ā 2 bestäms från A β ā 2 = a 2, d.v.s. ā 2 = A β a 2 = Nu ska x 2 väljas så stor som möjligt då x β är icke-negativ: [ / / x β = b ā 2 x 2 = / / x 2 0 Det största möjliga värdet på x 2 är, varvid x β2 = x 4 = 0. Alltså ska x 4 ersattas av x 2 i nästa baslösning. Föreläsning 2 20 Simplexmetoden - Ulf Jönsson & Per Enqvist
21 Simplex: Iteration 2 Låt β = {3, 2} och ν = {, 4}, A β = /, A ν = / / / [ [ c T β = 0 400, c T ν = [ Då blir baslösningen x β = b = A β b = tillåten. 5/6 0 [ [ = /6 Simplexmultiplikatorerna ges av ekvationen A T β y = c β y = A T β c β = 5/6 0 T = Föreläsning 2 2 Simplexmetoden - Ulf Jönsson & Per Enqvist
22 Simplex: Iteration 2 Reducerade kostnader ges av r T ν = c T ν y T A ν, d.v.s. T [ 0 r T ν = /40 0 = / [ Eftersom de reducerade kostnaderna är positiva så är den aktuella TBL optimal x 2 (2,4) (2,3) (3,4) 0 (,2) (,4) (,3) x Vi startade i origo med basvariabler (3,4) och bytte sedan till basvariablerna (3,2), dvs punkten (0,), vilken vi geometriskt motiverade är optimal. Föreläsning 2 22 Simplexmetoden - Ulf Jönsson & Per Enqvist
23 Initial tillåten baslösning Ibland kan det vara icke-trivialt att hitta en initial TBL. Då kan man lösa problemet i två faser. Här antar vi att b 0. Fas Lös LP-problemet minimera e T v då Ax + Iv = b x 0, v 0 [ T. där I är enhetsmatrisen och e =... Låt initial TBL svara mot variablerna i v. Om optimallösningen är ˆv = 0 så har man hittat en initial TBL till fas 2. Fas 2 Lös ursprungliga problemet på standardform med basvariabler från Fas. Föreläsning 2 23 Simplexmetoden - Ulf Jönsson & Per Enqvist
24 Läsanvisningar I Optimeringskompendiet kap. 4 och 5. Gamla Materialet: Linjär Optimering, Gröna häftet, sidan Linjar Algebra för optimerare, Gula häfte, sidan Föreläsning 2 24 Simplexmetoden - Ulf Jönsson & Per Enqvist
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Föreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Optimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Föreläsning 6: Transportproblem (TP)
Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016
Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that
Lösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017
Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Ett linjärprogrammeringsproblem på allmän form ser ut som
Linjärprogrammering Ett linjärprogrammeringsproblem på allmän form ser ut som Minimera n j=1 c jx j x j 0 n j=1 a ijx j b i i =1, 2,...,m Variant: Vi kan vilja maximera istället. Vi kommer att studera
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor
Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.
Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
TNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.
Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:
2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
SF1626 Flervariabelanalys
Föreläsning 9 Institutionen för matematik KTH VT 2018 1 Dagens program Extremvärdesproblem (största och minsta värde) kap 13.2 Extremvärdesproblem med bivillkor Lagranges multiplikatormetod kap 13.3 (+ev
1 Kvadratisk optimering under linjära likhetsbivillkor
Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen.
Sats: Varje anslutningsmatris ar fullstandigt unimodular. Bevis: Lat m beteckna antalet rader i anslutningsmatrisen. Betrakta kvadratiska delmatriser av storlek n n, dar n m, och anvand induktion med avseende
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)
Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information
Tentamensinstruktioner
Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar
SF1624 Algebra och geometri
SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a
Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.
Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Optimering på dator. Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet. Handledarens kommentarer.
Laborationsinstruktion Systemanalysgruppen, 1998 Uppsala universitet Optimering på dator Namn Handledarens kommentarer Grupp Inskrivningsår Utförd den Godkänd den Signum Leif Gustafsson 1985 Thomas Persson
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen.
Inledande kurs i matematik, avsnitt P. P..15 Bestäm en ekvation för den linje som går genom punkten P = ( 1, 1) och har riktningskoefficient k = 1. P..17 Bestäm en ekvation för den linje som går genom
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Kap Globala extremvärden, extremproblem med bivillkor.
Kap 13.2 13.3. Globala extremvärden, extremproblem med bivillkor. A 1001. Sök det största och minsta värdet av funktionen f(x,y) = x 2 + 2y 2 x på cirkeln x 2 + y 2 = 1. A 1002. Vilka värden kan funktionen
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Uppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Uppgift a) Här ses direkt att kan ökas obegränsat utan att bryta mot några bivillkor vilket i sin tur betyder att problemet har obegränsad lösning. b) Lös med Simple-algoritmen (t.e. med matris-metoden).
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar