MIO310 OPTIMERING OCH SIMULERING, 4 p

Storlek: px
Starta visningen från sidan:

Download "MIO310 OPTIMERING OCH SIMULERING, 4 p"

Transkript

1 Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING OCH SIMULERING, 4 p Datum:... Onsdag 11/ kl Plats:... MA:10 H-J Antal uppgifter:... 6 Poäng: Namn:... Personnummer:... Sektion och åk:... Kontrollera att Du fått rätt skrivning! Skrivningen består av 5 sidor (exklusive försättsblad och formelsamling). Kontrollera att du fått samtliga sidor! Betygsgränser: Betyg p Betyg p Betyg p Alla lösningar skall vara väl motiverade. Varje uppgift ska skrivas på separat papper. Skriv namn och årskurs överst på varje papper. Uppgifterna är inte anordnade efter svårighetsgrad. Tillåtna hjälpmedel: Ej förprogrammerad miniräknare, utdelad formelsamling LYCKA TILL! Resultat anslås:... Senast Tisdag 24/ i M-husets entré, norra delen Kl Onsdag 25:e mars 2007 i M:3145 Tentamensvisning:... Eventuella klagomål på rättningen skall lämnas in skriftligen i anslutning till visningen. Skrivningen delas ut 30 dagar efter visningen. Inga synpunkter beaktas efter att skrivningen delats ut.

2 Uppgift 1 (10p) Betrakta problemet Max z = 5x 1 + 6x 2 Då 2x 1 + 3x 2 18 (1) a 21 x 1 + a 22 x 2 12 (2) x 1 + x 2 8 (3) x 1, x 2 0 Problemet har lösts med simplexmetoden. Slackvariablerna s 1, s 2 och s 3 har införts i bivillkoren och optimaltablån har följande utseende: Basvar. X 1 X 2 S 1 S 2 S 3 b Z 0 0 7/4 3/4 0 81/2 X /2-1/2 0 3 X /4 3/4 0 9/2 S /4-1/4 1 1/2 OBS! Uppgifterna a) - d) löses oberoende av varandra! a) För vilka värden på målfunktionskoefficienten till variabeln x 1 är den optimala baslösningen oförändrad? (3p) b) Vilket är skuggpriset för bivillkor (2) och för vilka värden på högerledet till bivillkor (2) är detta skuggpris giltigt.(2p) c) En ny variabel x 3 med målfunktionskoefficient c 3 och bivillkorskolumn a 3 införs. Kommer detta att förändra den nuvarande optimallösningen? I så fall hur? (2p) c 3 =1, a 3 1 = 1 3 d) Ett nytt bivillkor 2x 1-2x 2 2, läggs till problemet. Vad blir den nya optimallösningen? Använd duala simplexmetoden för eventuell reoptimering. (3p) 1

3 Uppgift 2 (10p) Betrakta följande LP-problem (P) Max z = 2x 1 + x 2 + x 3 då 2x 1 + 3x 2 - x 3 9 2x 2 + x 3 4 x 1 + x 3 = 6 x 1, x 2, x 3 0 a) Formulera Fas 1 problemet för bestämning av en initial startbaslösning. (3p) b) Bestäm optimallösningen till problemet genom att använda Fas 2 metoden. (5p) c) Är den funna optimallösningen unik? Motivera! (2p) 2

4 Uppgift 3 (10p) Betrakta följande LP-problem: (P) Max z = 4x 2 + 3x 3 + 2x 4 8x 5 då 3x 1 + 1x 2 + 2x 3 + 1x 4 = 3 (1) 1x 1 1x 2 + 1x 4 1x 5 2 (2) x 1, x 2, x 3, x 4, x 5 0 a) Formulera LP-dualen till (P) och lös det duala problemet grafiskt. (4p) b) Använd lösningen till det duala problemet för att bestämma optimallösningen till problemet (P). Både målfunktionsvärde och värdena på samtliga primalvariabler, skall anges. (Ledning: använd komplementaritetsvillkoren) (4p) c) Vilket är skuggpriset för biv. (2) i (P) ovan och för vilka värden på högerledskoefficienten i (2) är detta fortfarande giltigt? (2p) 3

5 Uppgift 4 (10p) Blomstra AB är ett litet företag som tillverkar och säljer blomsterarrangemang gjorda av egentillverkade pappersblommor. Företaget köper in pappersark 1 m 2 stora och skär sedan ut blommor ur dessa ark enligt tre olika mönster. Mönster 1 ger 70 rosor och 20 nejlikor, Mönster 2 ger 60 rosor och 50 nejlikor, och Mönster 3 ger 23 rosor och 97 nejlikor. Det finns ingen möjlighet att lagerhålla färdigskurna blommor från en period till nästa varför ev. överblivna blommor, som ej inkluderats i något arrangemang och sålts, kasseras. Blomstra AB har begränsat sitt sortiment till att omfatta 2 olika blomsterarrangemang: Arrangemang A1 som kräver 8 rosor och 4 nejlikor samt Arrangemang A2 som omfattar 3 rosor och 12 nejlikor. A1 säljs för 250 kr/st och A2 inbringar ett pris på 350 kr/st. Inför den kommande perioden finns 50 m 2 papper i lager och maximalt kan ytterliggare 900 m 2 köpas in. Inköpskostnaden för pappersarken är i dagsläget 100 kr/m 2. Orsaken till den begränsade tillgången är att den exklusiva kinesiska leverantören har haft produktionsstörningar. Med anledning av den osäkra tillgången på papper har Blomstra bestämt att man bör ha minst 100 m 2 papper i lager inför nästa produktionsperiod. Maximalt kan 200 m 2 papper lagerhållas och lagerhållningskostnaden från en period till nästa är 5 kr/m 2 vilket beräknas på det utgående lagret och kostnaden tillskrivs den aktuella perioden. Det finns dessutom en begränsning i skärkapacitet. Ett ark av Mönster 1 tar 0.2 timmar att producera, ett ark av Mönster 2 tar 0.5 timmar att skära och Mönster 3 tar 0.7 timmar att skära ut. Maximal skärkapacitet för den kommande perioden är 200 timmar. Den rörliga kostnaden för skärmaskinen inklusive operatör är 100 kr/timme. Blomstra har också en möjlighet att köpa in extra skärkapacitet från en intilliggande fabrikant till en kostnad av 120 kr/timme. Maximalt kan 100 extra timmar inköpas. Inför den kommande perioden finns också några tidigare försäljningsåtaganden som måste infrias. Minst 40 blomsterarrangemang av typen A1 måste tillverkas för att levereras till en stamkund. Samtidigt har Blomstra bestämt att maximalt tillverka 200 st A1. Blomstra har också tagit ett policybeslut om att max 40% av det totala antalet blomsterarrangemang producerade under perioden får vara av typen A1. Eftersom Blomstras produkter är mycket efterfrågade kan vi anta att alla blomsterarrangemang som görs också kan säljas i samma period som de produceras. a) Formulera Blomstra ABs produktionsplaneringsproblem som ett LP-problem där målsättningen är att maximera det totala täckningsbidraget. Blomstra AB planerar i framtiden att bygga ut modellen till att omfatta flera perioder. För full poäng krävs därför att formuleringen skall vara enkel att anpassa till ett sådant scenario. Det kommer dock aldrig att bli aktuellt att lagerhålla färdigskurna blommor eller färdiga blomsterarrangemang från en period till nästa.(7p) b) Det visar sig vid närmare granskning att det finns en uppsättningskostnad samt en uppsättningstid förknippad med skärning enligt ett visst mönster. För att skära enligt Mönster 1 krävs en uppsättningstid på 8 h och en uppsättningskostnad på 1500 kr, för Mönster 2 är uppsättningstiden 10 h och uppsättningskostnaden 1600 kr och för Mönster 3 gäller en uppsättningstid på 12 h och en uppsättningskostnad på 2000 kr. Dessutom har Blomstra AB bestämt att maximalt 2 olika mönstertyper får användas under den aktuella perioden. Definiera nya variabler och ange hur modellen i a) måste modifieras för att beakta dessa nya hänsynstaganden. (3p) 4

6 Uppgift 5 (10p) I en arbetsstation finns det plats för tre stycken väntande jobb förutom det jobb som bearbetas i arbetsstationen. Jobb som anländer till arbetsstationen då denna är fullbelagd, dirigeras till en annan arbetsstation. Jobb anländer till arbetsstationen enligt en Poisson-process med medelvärde 8 jobb per dag. Arbetsstationens processtid (tiden det tar att bearbeta ett jobb) är exponentialfördelad med medelvärde 8 timmar. a) Konstruera ett tillståndsdiagram för det kösystem som uppkommer. (1p) b) Tag fram de stationära tillståndssannolikheterna för antal jobb i systemet. (5p) c) Beräkna andel tid som arbetsstationen inte spärrar nya jobb p.g.a. att arbetsstationen för fullbelagd. (1p) d) Beräkna medelantal jobb i arbetsstationen, samt medeltiden ett jobb tillbringar i arbetsstationen. (3p) Uppgift 6 (10p) Ett företag har ett reservdelslager med plats för maximalt fyra enheter av artikeln Alpha. Företagets beställningsregel är att beställa exakt tre stycken Alpha-artiklar då det endast finns en styck kvar i reservdelslagret. Kunder som vill köpa en Alpha-artikel antas anlända som en Poisson-process med intensitet λ per dag. Antag för enkelhets skull att tiden tills en beställning kommer in är exponentialfördelad med medelvärde 1 / μ dagar. De kunder som anländer då lagret är tomt går förlorade. a) Definiera lämpliga tillstånd och tag fram de stationära sannolikheterna för antal artiklar (Alpha) i lager. (6p) b) Antag att λ = 2 och μ = 1. Lagerhållningskostnaden per enhet och dag är 100 kr, och kostanden för varje förlorad kund beräknas vara 500 kr. Beräkna den förväntade totalkostnaden (d.v.s. förväntad lagerhållningskostnad plus förväntad förlorad kund - kostnad). (4p) 5

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING

Läs mer

MIO310 OPTIMERING OCH SIMULERING, 4 p

MIO310 OPTIMERING OCH SIMULERING, 4 p Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt

Läs mer

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.

Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3. TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12

TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12 1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Laboration 1 - Simplexmetoden och modellformulering

Laboration 1 - Simplexmetoden och modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.

1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t. 1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna

Läs mer

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling tillhandahålls i tentamenslokalen.

Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig (ej fackspråklig) ordbok utan kommentarer. Formelsamling tillhandahålls i tentamenslokalen. Operativ Verksamhetsstyrning/ Produktionslogistik Provmoment: Ladokkod: Tentamen ges för: TentamensKod: 7,5 högskolepoäng Skriftlig tentamen 41I32O, 51PL01 Affärsingenjör - inriktning bygg, Affärsingenjör

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Tentamen i Samhällsekonomi (NAA132)

Tentamen i Samhällsekonomi (NAA132) Mälardalens högskola, nationalekonomi Tentamen i Samhällsekonomi (NAA132) Examinationsmoment: TEN1, 6 högskolepoäng Lärare: Johan Lindén Datum och tid: 2018-02-16, 8.30-12.30 Hjälpmedel: miniräknare Betygsgränser,

Läs mer

Laboration 1 - Simplexmetoden och Modellformulering

Laboration 1 - Simplexmetoden och Modellformulering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Tentamen i Samhällsekonomi (NAA132)

Tentamen i Samhällsekonomi (NAA132) Mälardalens högskola, nationalekonomi Tentamen i Samhällsekonomi (NAA132) Examinationsmoment: TEN1, 6 högskolepoäng Lärare: Johan Lindén Datum och tid: 2018-06-04, 8.30-12.30 Hjälpmedel: miniräknare Betygsgränser,

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722)

Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Laborationsuppgift 1 Tillämpad optimeringslära för MMT (5B1722) Februari 2004 Avdelningen för Optimeringslära och Systemteori Institutionen för Matematik Kungliga Tekniska Högskolan Stockholm Allmän information

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 15 januari 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,

Läs mer

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna

Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14.

Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14. HÖGSKOLAN I HALMSTAD INSTITUTIONEN FÖR EKONOMI OCH TEKNIK Tentamen på kurs Nationalekonomi (1-20 poäng), delkurs 1, Mikroekonomisk teori med tillämpningar, 7 poäng, måndagen den 15 augusti 2005, kl 9-14.

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Försättsblad Tentamen

Försättsblad Tentamen Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Institution Ekonomihögskolan Skriftligt prov i delkurs Makro

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

TENTAMEN Tillämpad Systemanalys 5hp

TENTAMEN Tillämpad Systemanalys 5hp Tentamenskod (6 siffror) (alt. namn och personnummer) Utbildningsprogram Termin och år då du först registrerades på kursen Bordsnummer Klockslag för inlämning TENTAMEN Tillämpad Systemanalys 5hp Tid: 2012-0-11,

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten

Läs mer

Tentamen i Samhällsekonomi (NAA132)

Tentamen i Samhällsekonomi (NAA132) Mälardalens högskola, nationalekonomi Tentamen i Samhällsekonomi (NAA132) Examinationsmoment: TEN2, 6 högskolepoäng Lärare: Johan Lindén Datum och tid: 2018-06-08, 8.30-12.30 Hjälpmedel: miniräknare Betygsgränser,

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetoder Provmoment: Vetenskapsteori respektive forskningsmetod Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 2015-09-29

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)

Läs mer

Maximalt antal poäng för hela skrivningen är 22 poäng. För Godkänt krävs minst 13 poäng. För Väl Godkänt krävs minst 18 poäng.

Maximalt antal poäng för hela skrivningen är 22 poäng. För Godkänt krävs minst 13 poäng. För Väl Godkänt krävs minst 18 poäng. Försättsblad KOD: Kurskod: PC1546 Kursnamn: Kurs 7: Samhällsvetenskaplig forskningsmetodik/forskningsmetodik och fördjupningsarbete Provmoment: Statistik, 5 hp Ansvarig lärare: Pär Bjälkebring Tentamensdatum:

Läs mer

Försättsblad Tentamen

Försättsblad Tentamen Försättsblad Tentamen (Används även till tentamenslådan.) Måste alltid lämnas in. OBS! Eventuella lösblad måste alltid fästas ihop med tentamen. Institution Ekonomihögskolan Skriftligt prov i delkurs Tentamen

Läs mer

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)

Läs mer

Tentamensinstruktioner

Tentamensinstruktioner TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Tentamen i Samhällsekonomi (NAA132)

Tentamen i Samhällsekonomi (NAA132) Mälardalens högskola, nationalekonomi Tentamen i Samhällsekonomi (NAA132) Examinationsmoment: TEN1, 6 högskolepoäng Lärare: Johan Lindén Datum och tid: 2019-02-22, 14.30-18.30 Hjälpmedel: miniräknare Betygsgränser,

Läs mer

TENTAMEN Tillämpad Systemanalys 5hp

TENTAMEN Tillämpad Systemanalys 5hp TETAME Tillämpad Systemanalys 5hp Tid: 2012-12-17, 14.00-17.00. OBS: kort skrivtid! Plats: Bergsbrunnagatan 15, Sal 1. Ansvarig lärare: Håkan Lanshammar,. Håkan kommer och svarar på frågor ungefär kl 15.30.

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 26 augusti 2014 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006

Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006 Lösningsförslag Tentamen i Optimering och Simulering MIO /5 Uppgift a) svar: 9 8 b) Svar: Δ b < c) Svar : 5 Δ c < d) Svar: ma st 8 8 Uppgift a) Dualen (D) till det primala problemet (P) är: Ma y 5y y y

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 08 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13 Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski

Läs mer

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare.

Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna medelantal upptagna betjänare. Övning 5 Vad du ska kunna efter denna övning Kunna beräkna P (spärr) för system med begränsat antal kunder och köplatser. Kunna beräkna λ eff. Kunna beräkna medelantal upptagna betjänare. Problem. Antag

Läs mer

Skriv tydligt. Besvara inte frågor med lösryckta ord, utan sammanhängande och tydligt. Visa även dina beräkningar.

Skriv tydligt. Besvara inte frågor med lösryckta ord, utan sammanhängande och tydligt. Visa även dina beräkningar. KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Provmoment: Vetenskapsteori och forskningsmetod Ansvarig lärare: Anders Biel Tentamensdatum: 2014-09-30 kl. 13.30 17.30

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 2009 Statistiska Institutionen Gebrenegus Ghilagaber (docent) Skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, HT08. Torsdagen 15 januari 009 Skrivtid: 5 timmar (13-18) Hjälpmedel: Miniräknare,

Läs mer

IEK415 Industriell ekonomi E

IEK415 Industriell ekonomi E IEK415 Industriell ekonomi E 1 Måndagen den 17 febr fm (08.30-11.30) i V-huset, 2014 Tillåtna hjälpmedel Typgodkänd räknare, linjal, räntetabeller (sist i tentamenstesen) Presentation Obs! Före rättning

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod T0002N Kursnamn Logistik 1 Datum 2012-10-26 Material Fördjupningsuppgift Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer