1 Duala problem vid linjär optimering
|
|
- Ingeborg Mattsson
- för 10 år sedan
- Visningar:
Transkript
1 Krister Svanberg, april Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi då definiera det så kallade duala problemet svarande mot ett givet LP-problem. Kopplingen mellan detta duala problem och det ursprungliga, primala, problemet blir som mest tilltalande om det primala problemet är på följande form, som ibland kallas för den kanoniska formen på LP-problem: P : minimera c T x då Ax b, x 0, (1.1) där x IR n är variabelvektorn, c IR n och b IR m är givna vektorer, medan A är en given m n-matris. Vi refererar till detta LP-problem som det primala problemet P. De m st bivillkoren Ax b kallas allmänna, medan de n st bivillkoren x 0 kallas enkla. Mängden av x IR n som uppfyller samtliga bivillkor i P kallas för det tillåtna området till P och betecknas F P, dvs F P = {x IR n Ax b och x 0}. (1.2) Till skillnad från vad som gällde för LP-problem på standardform, behöver vi för problem på kanonisk form inte göra några speciella antaganden om matrisen A. Det går lika bra om m > n, m < n eller m = n. Vidare behöver A varken ha linjärt oberoende kolonner eller linjärt oberoende rader. 1.1 Definition av det duala problem till ett LP-problem på kanonisk form Det duala problemet D, svarande mot det ovanstående primala problemet P, definieras som följande problem: D : maximera b T y då A T y c, y 0, där y IR m är variabelvektorn, medan c, b och A är enligt ovan. De n st bivillkoren A T y c kallas allmänna, medan de m st bivillkoren y 0 kallas enkla. Mängden av y IR m som uppfyller samtliga bivillkor i D kallas för det tillåtna området till D och betecknas F D, dvs (1.3) F D = {y IR m A T y c och y 0}. (1.4) 1
2 1.2 Dualitetssatsen Först några ytterligare definitioner: Punkten x IR n är en tillåten lösning till det primala problemet P om x F P. Punkten ˆx IR n är en optimal lösning till problemet P om ˆx F P och dessutom c Tˆx c T x för alla x F P. Optimalvärdet till P ges då av c Tˆx. Punkten y IR m är en tillåten lösning till det duala problemet D om y F D. Punkten ŷ IR m är en optimal lösning till problemet D om ŷ F D och dessutom b T ŷ b T y för alla y F D. Optimalvärdet till D ges då av b T ŷ. Följande olikhet är fundamental: För varje x F P och varje y F D gäller att c T x b T y. (1.5) Bevis: Om x F P och y F D så är c T x b T y = x T c x T A T y + y T Ax y T b = = x T (c A T y) + y T (Ax b) 0, där den första likheten följer av att x T A T y = y T Ax, medan den avslutande olikheten följer av att x F P och y F D, dvs av att x 0, c A T y 0, y 0 och Ax b 0. En omedelbar konsekvens av olikheten (1.5) är följande optimalitetsvillkor: Om ˆx F P, ŷ F D och c Tˆx = b T ŷ så är ˆx och ŷ optimala till P resp D. (1.6) Bevis: För varje x F P och y F D så gäller, enligt (1.5), att c T x b T ŷ = c Tˆx b T y, dvs c Tˆx c T x och b T ŷ b T y, vilket innebär att ˆx är en optimal lösning till problemet P, medan ŷ är en optimal lösning till det duala problemet D. Beviset av följande viktiga sats ges i kompendiet. Sats: Om både F P och F D så finns det (minst) en optimal lösning ˆx till P och (minst) en optimal lösning ŷ till D. Dessa uppfyller att c Tˆx = b T ŷ. Om F P men F D = så finns det till varje tal ρ IR (t.ex ρ = ) ett x F P sådant att c T x < ρ. Man säger här att optimalvärdet till P =. Varken P eller D har i detta fall någon optimal lösning. Om F D men F P = så finns det till varje tal ρ IR (t.ex ρ = ) ett y F D sådant att b T y > ρ. Man säger här att optimalvärdet till D = +. Varken P eller D har i detta fall någon optimal lösning. Slutligen kan det även inträffa att både F P = och F D =, så att varken P eller D har några tillåtna lösningar. Som en direkt konsekvens av denna sats får vi omvändningen till (1.6) ovan: Om ˆx och ŷ är optimala lösningar till P resp D så är c Tˆx = b T ŷ. (1.7) 2
3 1.3 Komplementaritetssatsen Av (1.6) och (1.7) följer att ˆx och ŷ är optimala lösningar till P resp D om och endast om ˆx F P, ŷ F D och c Tˆx = b T ŷ. Vi ska här ge ett alternativt (och ofta mer användbart) kriterium för när två tillåtna lösningar till P resp D även är optimala lösningar till P resp D. Om x IR n så låter vi s = Ax b. Då är x F P ekvivalent med att x 0 och s 0. Om y IR m så låter vi r = c A T y. Då är y F D ekvivalent med att y 0 och r 0. Med hjälp av dessa beteckningar kan komplementaritetssatsen formuleras på följande sätt: Sats: x IR n är en optimal lösning till P och y IR m är en optimal lösning till D om och endast om x j 0, r j 0, x j r j = 0 för j = 1... n, y i 0, s i 0, y i s i = 0 för i = 1... m, där s = Ax b och r = c A T y. Bevis: Antag först att villkoren (1.8) är uppfyllda. Då är x F P (ty x 0 och s 0) samt y F D (ty y 0 och r 0). Vidare är c T x b T y = x T c x T A T y + y T Ax y T b = x T (c A T y) + y T (Ax b) = = x T r + y T s = n j=1 x jr j + m i=1 y is i = 0 (ty alla x j r j = 0 och alla y i s i = 0). Därmed är c T x = b T y, vilket enligt (1.6) medför att x är en optimal lösning till P och att y är en optimal lösning till D. Antag nu omvänt att x är en optimal lösning till P och att y är en optimal lösning till D. Då är x en tillåten lösning till P, så att x 0 och s 0, medan y är en tillåten lösning till D, så att y 0 och r 0. Vidare gäller enligt (1.7) att c T x = b T y, vilket ger att 0 = c T x b T y = x T c x T A T y + y T Ax y T b = x T (c A T y) + y T (Ax b) = = x T r + y T s = n j=1 x jr j + m i=1 y is i. Notera att varje enskild term i var och en av dessa båda summor är icke-negativ (eftersom x j 0, r j 0, y i 0 och s i 0). Men enda möjligheten för en summa av icke-negativa termer att bli = 0 är att varje enskild term i summan är = 0. Därmed är alltså alla x j r j = 0 och alla y i s i = 0. (1.8) Som framgår av bevisets senare del är villkoren x j r j = 0 och y i s i = 0 i satsen ekvivalenta med villkoren att x T r = 0 och y T s = 0, eftersom vi vet att alla dessa fyra vektorer är 0 (annars vore de inte ekvivalenta förstås). Därför kan komplementaritetssatsen formuleras på följande kortare form: x IR n är en optimal lösning till P och y IR m är en optimal lösning till D om och endast om följande villkor är uppfyllda: Ax b, A T y c, x 0, y 0, y T (Ax b) = 0, x T (c A T y) = 0. (1.9) I ord säger komplementaritetssatsen att nödvändiga och tillräckliga villkor för att en tillåten lösning till P och en tillåten lösning till D även ska vara optimala lösningar till P resp D är att det för varje j {1,..., n} gäller att antingen är det j:te enkla bivillkoret i problemet P uppfyllt med likhet eller också är det j:te allmänna bivillkoret i problemet D uppfyllt med likhet, samt att det för varje i {1,..., m} gäller att antingen är det i:te enkla bivillkoret i problemet D uppfyllt med likhet eller också är det i:te allmänna bivillkoret i problemet P uppfyllt med likhet. 3
4 1.4 Duala problemet till ett LP-problem på allmän form Betrakta ett LP-problem på följande allmänna form. P : minimera c T 1 x 1 + c T 2 x 2 då A 11 x 1 + A 12 x 2 b 1, A 21 x 1 + A 22 x 2 = b 2, x 1 0, x 2 fri, (1.10) där c 1 IR n 1, c 2 IR n 2, b 1 IR m 1 och b 2 IR m2 är givna vektorer, A 11 IR m 1 n 1, A 12 IR m 1 n 2, A 21 IR m 2 n 1 och A 22 IR m 2 n2 är givna matriser, medan x 1 IR n 1 och x 2 IR n2 är variabelvektorerna. Att x 2 är fri innebär att det inte finns något krav på att komponenterna i vektorn x 2 ska vara icke-negativa. Med hjälp av de knep som beskrevs i första föreläsningen kan detta problem (1.10) transformeras till ett ekvivalent problem på formen (1.1). Likhetsbivillkoren A 21 x 1 + A 22 x 2 = b 2 ersätts därvid med olikhetsbivillkoren A 21 x 1 + A 22 x 2 b 2 och A 21 x 1 A 22 x 2 b 2, medan de fria variablerna ersätts med differensen mellan teckenbegränsade variabler, dvs x 2 = v 2 v 3 där v 2 0 och v 3 0. Då erhålls problemet P : minimera c T 1 x 1 + c T 2 v 2 c T 2 v 3 då A 11 x 1 + A 12 v 2 A 12 v 3 b 1, A 21 x 1 + A 22 v 2 A 22 v 3 b 2, A 21 x 1 A 22 v 2 + A 22 v 3 b 2, x 1 0, v 2 0, v 3 0, (1.11) som är ett problem på formen (1.1) med A 11 A 12 A 12 b 1 c 1 A = A 21 A 22 A 22, b = b 2, c = c 2 och x = A 21 A 22 A 22 b 2 c 2 För att ställa upp det motsvarande duala problemet inför vi variabelvektorn y = x 1 v 2 v 3. y 1 u 2, samt noterar att A T = A T 11 A T 21 A T 21 A T 12 A T 22 A T 22 A T 12 A T 22 A T 22. u 3 4
5 Eftersom det duala problemet till (1.1) ges av (1.3), så ges det duala problemet till (1.11) därmed av följande problem: D : maximera b T 1 y 1 + b T 2 u 2 b T 2 u 3 då A T 11 y 1 + A T 21 u 2 A T 21 u 3 c 1, A T 12 y 1 + A T 22 u 2 A T 22 u 3 c 2, A T 12 y 1 A T 22 u 2 + A T 22 u 3 c 2, y 1 0, u 2 0, u 3 0. (1.12) Här kan olikhetsbivillkoren A T 12 y 1 +A T 22 u 2 A T 22 u 3 c 2 och A T 12 y 1 A T 22 u 2 +A T 22 u 3 c 2 ersättas med likhetsbivillkoren A T 12 y 1 + A T 22 u 2 A T 22 u 3 = c 2, varefter differensen mellan vektorerna u 2 och u 3 kan ersättas med en vektor y 2, dvs y 2 = u 2 u 3, som inte är teckenbegränsad. Då erhålls följande problem i variabelvektorerna y 1 IR m 1 och y 2 IR m 2. D : maximera b T 1 y 1 + b T 2 y 2 då A T 11 y 1 + A T 21 y 2 c 1, A T 12 y 1 + A T 22 y 2 = c 2, y 1 0, y 2 fri, (1.13) Detta problem (1.13) utgör alltså det duala problemet till (1.10). 5
6 1.5 Duala problemet till ett LP-problem på standardform Betrakta nu ett LP-problem på standardform, dvs P : minimera c T x då Ax = b, x 0. (1.14) Detta är det specialfall av problemet (1.10) som erhålls om man där låter A 21 = A, c 1 = c, b 2 = b och x 1 = x, medan matriserna och vektorerna A 11, A 12, A 22 c 2, b 1 och x 2 samtliga lämnas tomma (dvs icke närvarande). Det duala problem till (1.14) är därmed motsvarande specialfall (med A 21 = A, etc.) till problemet (1.13), dvs, med y 2 = y, D : maximera b T y då A T y c. (1.15) Detta problem (1.15) utgör alltså det duala problemet till (1.14). Antag att vi har löst ett givet problem på formen (1.14) med den version av simplexmetoden som beskrevs i föreläsning 3, och antag att vi avbrutit algoritmen på grund av att r ν 0. Då gäller att A β b = b, b 0, A T β y = c β och A T ν y c ν (eftersom r ν = c ν A T ν y 0). Låt vektorn x IR n definieras av att x β = b och x ν = 0 (så att x är den aktuella baslösningen). Då är x 0 och Ax = A β x β + A ν x ν = A β b = b, vilket innebär att x är en tillåten lösning till det primala problemet (1.14), förstås! Vidare är A T y c, eftersom A T β y = c β och A T ν y c ν, vilket innebär att vektorn y IR m är en tillåten lösning till det duala problemet (1.15). Slutligen är c T x = c T β x β + c T ν x ν = c T β x β = (A T β y)t b = y T A β b = y T b = b T y. Följande gäller alltså: För det första är x en tillåten lösning till det primala problemet. För det andra är y en tillåten lösning till det duala problemet. För det tredje är c T x = b T y. Tillsammans medför detta att x är en optimal lösning till det primala problemet (1.14), vilket vi redan visste, men också att y är en optimal lösning till det duala problemet (1.15)! När vi har löst det primala problemet (1.14) med simplexmetoden, och hittat en optimal lösning x, så har vi alltså även beräknat en optimal lösning y till det duala problemet (1.15). 6
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
1 De fyra fundamentala underrummen till en matris
Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,
Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013
Lösningar till SF86/SF85 Optimeringslära, 4/5 03 Uppgift (a) Inför de 3 variablerna x ij = kvantitet (i sorten ton) som fabrik nr i åläggs att tillverka av produkt nr j, samt t = tiden (i sorten timmar)
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
1 Konvexa optimeringsproblem grundläggande egenskaper
Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Torsdag 28 maj 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Inför variablerna x = (x sr, x sm, x sp, x sa, x sd, x gr, x gm, x gp,
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
Lösningar till tentan i 5B1760 Linjär och kvadratisk optimering, 17 december 2003.
Lösningar till tentan i 5B7 Linjär och kvadratisk optimering, 7 december 3 Uppgift (a) 3 Vi använder Gauss-Jordans metod för att överföra A 3 5 till trappstegsform 3 7 Addition av ( ) gånger första raden
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
Lösningar till SF1852 Optimeringslära för E, 16/1 08
Lösningar till SF8 Optimeringslära för E, 6/ 8 Uppgift (a) Problemet är ett transportproblem, ett specialfall av minkostnadsflödesproblem Nätverket består av 7 st noder A,B,C,P,Q,R,S, alternativt kallade,,,7,
Optimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
1 Ickelinjär optimering under bivillkor
Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
1 Kvadratisk optimering under linjära likhetsbivillkor
Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
1 Positivt definita och positivt semidefinita matriser
Krister Svanberg, april 1 1 Positivt definita och positivt semidefinita matriser Inom ickelinjär optimering, speciellt kvadratisk optimering, är det viktigt att på ett effektivt sätt kunna avgöra huruvida
Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017
Lösningar till tentan i SF86 Optimeringslära, juni 7 Lösningarna är på svenska, utom lösningen av (a som är på engelska (a The considered network is illustrated in FIGURE below, where the supply at the
Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl
Lösningsförslag till tentamen i SF86 Optimeringslära för T. Onsdag 25 augusti 2 kl. 4. 9. Examinator: Per Enqvist, tel. 79 62 98. (a) Vi har ett nätverksflödesproblem med 5 noder. Låt x = (x 2, x 3, x
Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016
Lösningar till tentan i SF86 Optimeringslära, 3 Juni, 6 Uppgift (a) We note that each column in the matrix A contains one + and one, while all the other elements in the column are zeros We also note that
Föreläsning 7: Kvadratisk optimering. 4. Kvadratisk optimering under linjära bivillkor
Föreläsning 7: Kvadratisk optimering 1. Kvadratisk optimering utan bivillkor 2. Positivt definita och semidefinita matriser 3. LDL T faktorisering 4. Kvadratisk optimering under linjära bivillkor 5. Minsta
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Hemuppgift 1, SF1861 Optimeringslära, VT 2017
Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,
Hemuppgift 1, SF1861 Optimeringslära för T
Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon
SF1624 Algebra och geometri
Föreläsning 16 Institutionen för matematik KTH 5 december 2017 Modul 6 Veckans arbete 1. Idag: Ortonormalt, kap 7.1-7.2 a. Ortogonala och ortonormala baser b. Gram-Schmidts metod c. Ortogonala matriser
5B1817 Tillämpad ickelinjär optimering. Optimalitetsvillkor för problem med linjära bivillkor.
5B1817 Tillämpad ickelinjär optimering Föreläsning 2 Optimalitetsvillkor för problem med linjära bivillkor. A. Forsgren, KTH 1 Föreläsning 2 5B1817 2006/2007 Optimalitetsvillkor för ickelinjära programmeringsproblem
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2
. Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6
Linjär Algebra M/TD Läsvecka 1
Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination
Hemuppgift 1, SF1861 Optimeringslära, VT 2016
Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas in till någon av oss senast tisdag 19 april
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.
5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
Uppgift 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Uppgift a) Här ses direkt att kan ökas obegränsat utan att bryta mot några bivillkor vilket i sin tur betyder att problemet har obegränsad lösning. b) Lös med Simple-algoritmen (t.e. med matris-metoden).
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Föreläsning 9: NP-fullständighet
Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till
MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =
Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET
6.4. Linjära ekvationssytem och matriser
5 6 MATRISER 6.4. Linjära ekvationssytem och matriser Vi har tidigare sett att linjära ekvationssytem kan skrivas om med hjälp av matriser, så visst finns det ett samband mellan dessa. Nedan ska vi studera
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp
6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet
November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan
Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination
Föreläsning 7. Felrättande koder
Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas
Mer om analytisk geometri
1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
SF1624 Algebra och geometri
Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Tentamensinstruktioner. Vid skrivningens slut
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n
Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:
Optimering med bivillkor
Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
Föreläsning 13 Linjär Algebra och Geometri I
Föreläsning 13 Linjär Algebra och Geometri I Se slide 1: det är i rymden oftast lättast att jobba med parametrar för linjer och ekvationer för plan. Exempel: Låt l : (x, y, z) = (1 t, 3 + t, 4t), t R och
Linjär algebra I, vt 12 Vecko PM läsvecka 4
Linjär algebra I, vt 12 Vecko PM läsvecka 4 Lay: 2.8-2.9, 4.1-4.6 Underrum i R n, dimension och rang. Vektorrum. Innehållet i avsnitten 2.8 och 2.9 täcks av kapitel 4, men presenterar begreppen på ett
Algebraiska egenskaper hos R n i)u + v = v + U
Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)
Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
VEKTORRUMMET R n. 1. Introduktion
VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,
8 Minsta kvadratmetoden
Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Minsta kvadratmetoden
Minsta kvadratmetoden där Överbestämda ekvationssystem Det är lämpligt att uppfatta matrisen A som bestående av n kolonnvektorer: A a a a n a a a n a n a n a nn a j a j a nj a a a n j n Då kan vi skriva
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Härledning av Black-Littermans formel mha allmänna linjära modellen
Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem
Basbyte (variabelbyte)
Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Linjär algebra Föreläsning 10
Linjär algebra Föreläsning 10 IT-programmet, Chalmers 2006 Samuel Bengmark Repetition Handlade om kvadratiska matriser. Kvadratiska ekvationssystem har: Unik lösning omm Det(A) 0. Har oändligt antal lösningar
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att
Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre
Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 1 016 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1.
Lösningsförslag till övningsuppgifter, del V
Lösningsförslag till övningsuppgifter, del V Obs! Preliminär version! Ö.1. (a) Vi kan lösa uppgiften genom att helt enkelt räkna ut avståndet mellan vart och ett av de ( 7 ) = 1 paren. Först noterar vi
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
10.4. Linjära höljet LINJÄRA RUM
98 LINJÄRA RUM.4. Linjära höljet Definition.37. Mängden av alla linjärkombinationer av M = {v, v,...,v n } iett linjärt rum V kallas för linjära höljet av M betecknas [M], dvs [M] ={u V : u = λ v + λ v
November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)
Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med
Linjär Algebra M/TD Läsvecka 3
bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild
TMV166 Linjär algebra för M, vt 2016
TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
e = (e 1, e 2, e 3 ), kan en godtycklig linjär
Linjära avbildningar II Förra gången visade vi att givet en bas i rummet, e = (e 1, e 2, e 3 ), kan en godtycklig linjär avbildning F : R 3 R 3 representeras av en matris: Om vi betecknar en vektor u:s
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015
Lösningar till tentan i SF86/5 Optimeringslära, 3 juni, 25 Uppgift.(a) Första delen: The network is illustrated in the following figure, where all the links are directed from left to right. 3 5 O------O
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Föreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI Delkurs 207 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.. För