TNSL05 Optimering, Modellering och Planering. Föreläsning 6
|
|
- Georg Eliasson
- för 6 år sedan
- Visningar:
Transkript
1 TNSL05 Optimering, Modellering och Planering Föreläsning 6
2 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
3 Marcus Posada Kursens status Föreläsning (1), -5: Modellering Föreläsning 6-10, (11): Lösningsmetod/känslighetsanalys Gruppuppgifter: Gruppuppgift 1: Redovisas muntligt v. 47. Uppgiften och en anmälningslista ligger på Lisam. Gruppuppgift : Redovisas muntligt v. 49. Uppgiften och en anmälningslista kommer läggas upp på Lisam under v. 47. Gruppuppgift 3: Redovisas skriftligt senast onsdag v. 51. Uppgiften och en anmälningslista kommer läggas upp på Lisam under v. 48
4 Marcus Posada Kursens status Laborationsmomentet: Anmälningslistan ligger ute. Skriv upp er! Läs redan nu labbinstruktionen som ligger på Lisam! Fre. v. 48 Tor. v. 48 Fre. v. 50
5 Marcus Posada Hittills Föreläsning 1: kursadministration, intro: Vad är matematisk modellering?, historia, tillämpningseempel, kompleitet Föreläsning : summering och inde, matematisk modellering Föreläsning 3: matematisk modellering, LP Föreläsning 4: matematisk modellering, HP Föreläsning 5: matematisk modellering, nätverk
6 Marcus Posada Idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden Analysera och dra slutsatser från känslighetsanalys för linjära optimeringsproblem och optimeringsproblem med nätverksstruktur Förklara den grundläggande matematiska teorin på vilka modeller och algoritmer bygger Dra slutsatser från optimeringsmetoder för linjära optimeringsproblem (Simplemetoden) samt för optimeringsproblem med nätverksstruktur (Simple för minkostnadsflödesproblem och Dijkstras algoritm för billigasteväg problem)
7 Agenda Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
8 Marcus Posada Kvantitativa metoder/modellering Förenklat problem Formulering (Kvantitativ) modell Översättning Indata (AMPL) modell (Kvantitativ)Metod/Algoritm Lösning Känslighetsanalys Utdata
9 Marcus Posada Tolkning utdata Utdata är (naturligtvis) oftast Optimalt målfunktionsvärde Optimala värden på variabler (optimallösningen) Jämför två utdata med olika indata kan ge svar T.e. Vad tjänar vi på om Hur förändras lösningen om Etc.
10 Marcus Posada Tolkning utdata Utdata kan också ge en mängd annan information Hur stabil är lösningen Vad händer vid (mindre, enstaka) förändringar Detta kallas vanligtvis känslighetsanalys Oftast en biprodukt av lösningen Marginell ytterligare databehandling Praktiskt intressant i stora/gigantiska problem Vi tittar på pytteproblem, där metoden blir viktigare än praktiken Metoder återkommer vi till
11 Marcus Posada Linus, igen Linus har kommit på att pannkakor och sockerkakor säljer bra i Norrköping. En pannkaka ger honom 8 kronor i vinst och en sockerkaka 15 kronor. En pannkaka tar 4 minuter att göra, medan en sockerkaka tar 10 minuter. Eftersom Linus även studerar på universitetet, har han högst timmar varje dag i sin firma. Hemligheten bakom hans goda pannkakor och sockerkakor är äggen han köper av en bonde i Askeby, och saltet hämtas ur Gullmarsfjorden. Bonden kan bara sälja 0 ägg per dag till Linus. Varje sockerkaka kräver ägg och varje pannkaka 1/3 ägg. Formulera Linus (vinstmaimerings)problem! Det nordliga klimatet gör att han bara kan få fram 0 kryddmått salt per dag. Varje pannkaka innehåller ett kryddmått salt
12 Marcus Posada Känslighetsanalys Bakproblemet Opttimallösning: 0 pannkakor, 4 sockerkakor Optimalt målfunktionsvärde: 0 Optimalt målfknvärde om 0 minuter till 50 Dvs värde/beredd betala (50-0)/0=1.5/minut Optimalt målfknvärde om ytterligare 0 minuter till 60 Dvs värde/beredd betala (60-50)/0=0.5/minut Optimalt målfknvärde om ytterligare 1 miljard minuter till 60!
13 CPLEX : sensitivity CPLEX : optimal solution; objective 0 1 dual simple iterations (1 in phase I) Optimalt målfunktionsvärde suffi up OUT; suffi down OUT; suffi current OUT; vinst = 0 Lösning Aktuell målfknkoeff : antal antal.rc antal.down antal.current antal.up := pannkaka e e+0 sockerkaka ; Reducerad kostnad (rc) i opt variabelvärde*rc=0 Vi kommer tillbaka till rc lite senare Intervall målfknkoeff med bibehållen lösning (dvs samma värden på variablerna)
14 CPLEX : sensitivity CPLEX : optimal solution; objective dual simple iterations (1 in phase I) suffi up OUT; suffi down OUT; suffi current OUT; vinst = 150 Om vinsten för en pannkaka bara är kr : antal antal.rc antal.down antal.current antal.up := pannkaka e+0.5 sockerkaka e+0 ; rc: marginalförändring av målfunktionen om pannkaka>0 För att vi ska vilja baka pannkakor måste vinsten öka med minst 0.5 per pannkaka
15 CPLEX : sensitivity CPLEX : optimal solution; objective 0 1 dual simple iterations (1 in phase I) Slack=Tillgänglig (outnyttjad) resurs Dual= Förändrat målfknvärde per enhets ökning av HL (HL = Högerled) Om vinsten för en pannkaka är 8kr (som i ursprungsmodellen) Intervall HL med bibehållen samma villkor begränsande, dvs med oförändrat dualvärde Dock naturligtvis förändrad lösning om slack=0 Aktuellt HL : biv.slack biv.dual biv.down biv.current biv.up := agg e+0 salt tid ;
16 Agenda Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
17 Marcus Posada Generell sökmetod Steg 0 Steg 1 Steg Steg 3 Steg 4 Börja i en tillåten startpunkt Bestäm tillåten och förbättrande sökriktning Kontrollera avbrott. Saknas tillåten och förbättrande sökriktning är vi i (lokalt) opt Bestäm steglängd Beräkna nya punkten genom att gå steglängden i förbättrande sökriktningen Steg 5 Repetera från steg 1
18 1
19 1
20 1
21 1 tid
22 ägg 1 tid
23 ägg salt 1 tid
24 ägg salt 1 tid
25 ägg salt 1 tid
26 ägg salt 1 tid
27 ägg salt 1 tid
28 ägg salt 1 tid
29 Opt! ägg salt 1 tid
30 Marcus Posada Vad händer om vi ändrar vinsten för en sockerkaka från 15 till 0 kronor styck?
31 ägg salt 1 tid
32 ägg salt 1 tid
33 ägg salt 1 tid
34 Opt! Opt! ägg salt 1 tid
35 Agenda Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
36 Marcus Posada LP-problem på standardform Standardform Alla villkor likhet Ev. inför s.k. slackvariabler (med rätt tecken) Ofta betecknas de s, men det är ingen regel bara tydlighhet Alla variabler ickenegativa Ev. variabelsubsitution Alla högerled ickenegativa Ev. Teckenbyt Eempel ma z då , 0,
37 Marcus Posada Algebraisk formulering av LP A ma z då ,, 3, 4, 5 b c
38 Agenda Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
39 Marcus Posada Lokala och globala optima k är ett lokalt optimum (min) om k f f för alla tillräckligt nära är ett globalt optimum (min) om för alla f f min då I ett konvet problem är varje lokalt optimum också ett globalt optimum Konve funktion över ett konvet område Konvea problem trevligare än andra f ( ) X X k
40 Marcus Posada Konvea funktioner Konve om Varje rät linje mellan två punkter på funktionskurvan, ligger på eller ovanför kurvan Ej konve om Någon rät linje mellan några punkter på funktionskurvan, ligger under kurvan
41 Marcus Posada Konvea mängder Konve om Varje rät linje mellan två punkter i mängden, ligger i mängden Ej konve om Någon rät linje mellan några punkter på mängden, går utanför mängden Skärning av konvea mängder utgör en konve mängd
42 Marcus Posada Linjärprogrammeringens grunder Linjära bivilkor ger konvea mängder Tillåtna området blir konvet Konve målfunktion Konvet problem Lokalt opt är globalt opt! (Smart) lokal sökmetod funkar bra Simplemetoden Men hur skall denna sökning gå till?
43 Linjärt problem ma f ( ) då g i ( ) b i, i 1 n ma f ( ) då 1 1 1, 9 0 Om f (), g i är linjära ( ), i Konvet problem -> Lokalt opt=globalt 1
44 Ickelinjärt problem ma då g i f ( ) ( ) Om minst en av f (), g i är ickelinjär b i, i ( ), i 1 ma f ( ) sin(1 ) sin( ) ( 1 ) /5 då 9 n 1 1, 0 Ickekonvet problem -> Lokalt opt=???? 1
45 Diskreta problem Om dessutom är diskreta (te. heltal) Vad betyder lokal? Lokalt opt=??? 1 ) ( ma f 0, heltal, 9 då 1 1 n i b g f i i 1, ) ( då ) ( ma 1
46
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
TNK049 Optimeringslära
TNK09 Optimeringslära Clas Rydergren ITN Föreläsning Simplemetoden på tablåform och algebraisk form Fas I (startlösning) Känslighetsanalys Tolkning av utdata Agenda Halvtidsutvärdering Simplemetoden (kap..8)
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
TNSL05 Optimering, Modellering och Planering. Föreläsning 1
TNSL05 Optimering, Modellering och Planering Föreläsning 1 2018-11-05 2 Föreläsning 1, dagordning Kursadministration Lärare Mål Kurshemsida Kursmoment Gruppindelningar Examination Litteratur Optimering
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 6 Det duala problemet Relationer primal dual Optimalitetsvillkor Nätverksoptimering (introduktion) Agenda Motivering av det duala problemet (kap 6.)
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
TNSL05 Optimering, Modellering och Planering. Föreläsning 9
TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2010 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010 1 Kursmål & innehåll 1.1 Mål med
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 1 Kursintroduktion Ämnesintroduktion Terminologi Tillämpningar Agenda Vilka personer medverkar i kursen? Kursupplägg Lärobok Laborationer Återkoppling
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
Optimeringslära för T (SF1861)
Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
5B1817 Tillämpad ickelinjär optimering. Kvadratisk programmering med olikhetsbivillkor Active-set metoder
5B1817 Tillämpad ickelinjär optimering Föreläsning 7 Kvadratisk programmering med olikhetsbivillkor Active-set metoder A. Forsgren, KTH 1 Föreläsning 7 5B1817 2006/2007 Kvadratisk programmering med olikhetsbivillkor
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
TNSL05, Optimering, Modellering och Planering Gruppuppgift 3
ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i
Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP14: Optimeringslära grundkurs
TAOP14: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP14: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TAOP52: Optimeringslära grundkurs
TAOP2: Optimeringslära grundkurs Nils-Hassan Quttineh Optimeringslära, MAI TAOP2: Föreläsning 1 2 Föreläsning 1: Kurspresenta3on och introduk3on 3ll op3meringslära Vad är op3meringslära och vad kan det
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).
Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Optimering och simulering: Hur fungerar det och vad är skillnaden?
Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Linjärprogrammering (Kap 3,4 och 5)
Linjärprogrammering (Kap 3,4 och 5) Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet 16 september 2015 Dessa sidor innehåller kortfattade
Optimering Linjär programmering
Optimering Linjär programmering Ett optimeringsprolem estår av: En målfunktion, f(), vars maimum, eller minimum ska sökas. En eller flera -varialer (eslutsvarialer som man str över). Eventuellt okså ett
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov Roghayeh
Lösningsförslag Tentamen i Optimering och Simulering MIO /5 2006
Lösningsförslag Tentamen i Optimering och Simulering MIO /5 Uppgift a) svar: 9 8 b) Svar: Δ b < c) Svar : 5 Δ c < d) Svar: ma st 8 8 Uppgift a) Dualen (D) till det primala problemet (P) är: Ma y 5y y y
TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST:
2015 TAOP14: Optimeringslära SAMMANFATTNING OSKAR QVIST: OSKQV953@STUDENT.LIU.SE Innehållsförteckning Allmänt... 2 Om optimering... 3 Matematiska formuleringar av optimeringsproblem... 3 Linjärprogrammering
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola
MIO310 Optimering & Simulering 2013 Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Optimering. TAOP86 Kombinatorisk optimering med miljötillämpningar. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP86 Kombinatorisk optimering med miljötillämpningar Examinator: Kaj Holmberg kaj.holmberg@liu.se http://courses.mai.liu.se/gu/taop86 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Björn Morén
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola
MIO310 Optimering & Simulering 2015 Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2 Rek.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
1 Duala problem vid linjär optimering
Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi
Tentamensinstruktioner
TNSL05 1(11) TENTAMEN Datum: 14 januari 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12
z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet
Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
MICROECONOMICS Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander &
MICROECONOMICS 2018 Mid Sweden University, Sundsvall (Lecture 2) Peter Lohmander www.lohmander.com & Peter@Lohmander.com NYTT MÖTE: Diskutera Ert förslag till lämpligt problem med kursledaren (Peter Lohmander)
Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Icke-linjära ekvationer
stefan@it.uu.se Eempel f ( ) = e + = 5 3 f ( ) = + + 5= f (, y) = cos( ) sin ( ) + y = Kan endast i undantagsfall lösas eakt Kan sakna lösning, ha en lösning, ett visst antal lösningar eller oändligt många
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Optimering och Simulering (MIO310) Kursinformation HT 2016
INSTITUTIONEN FÖR TEKNISK EKONOMI OCH LOGISTIK AVDELNINGEN FÖR PRODUKTIONSEKONOMI www.pm.lth.se Optimering och Simulering (MIO310) Kursinformation HT 2016 AVD F PRODUKTIONSEKONOMI GATUADRESS: TELEN: HEMSIDA:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Lösningar till SF1861 Optimeringslära, 28 maj 2012
Lösningar till SF86 Optimeringslära, 28 maj 202 Uppgift.(a) Då det primala problemet P är så är det motsvarande duala problemet D minimera 3x + x 2 då 3x + 2x 2 6 x + 2x 2 4 x j 0, j =, 2. maximera 6 +
Optimering och Simulering (MIOF30) Kursinformation HT 2019
INSTITUTIONEN FÖR TEKNISK EKONOMI OCH LOGISTIK AVDELNINGEN FÖR PRODUKTIONSEKONOMI www.pm.lth.se Optimering och Simulering (MIOF30) Kursinformation HT 2019 AVD F PRODUKTIONSEKONOMI GATUADRESS: TELEFON: