TNSL05, Optimering, Modellering och Planering Gruppuppgift 3
|
|
- Lina Lundström
- för 6 år sedan
- Visningar:
Transkript
1 ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet gruppuppgifter Under kursen skall 3 gruppuppgifter genomföras. Detta är den tredje uppgiften. Gruppuppgifterna skall lösas i grupper om två studenter. EN grupp om tre studenter kan tillåtas, men då kan man förvänta sig någon eller några extrauppgifter. Blir det fler grupper än en, som innehåller tre studenter, kommer dessa att delas. Gruppuppgifterna skall lösas inom gruppen. Man får inte ta hjälp från någon annan grupp. Vid frågor kring problemen, kan dessa diskuteras med kursansvarig och lektionshandledare. Godkända gruppuppgifter ger 2 hp. 1.2 Förberedelse 1. Repetera simplex för minkostnadsflödesproblem som presenterades på föreläsning Gå på egen hand igenom introduktionen till känslighetsanalys som finns som filmmaterial under föreläsning Redovisning och bedömning Denna gruppuppgift redovisas skriftligen och lösningen laddas upp på Lisam senast den 21/ Den skriftliga redovisningen ska visa beräkningsgång och svar på respektive fråga. Var noga med att använda den metodik som har undervisats i kursen. Gruppen laddar upp ett gemensamt dokument, men var noga med att ange båda gruppmedlemmarnas i Lisam. 1.4 Problem Problemet som samtliga grupper ska lösa utgår från gruppuppgift 2, och uppgiften finns på nästa sida. 1(5)
2 Alla data nedan är givna per månad (där så är relevant; dvs. efterfrågan, tillgång, transportbegränsningar etc. är enheter per månad) Företaget har i denna uppgift 2 producerande anläggningar. En av dessa anläggningar ligger i Kuala Lumpur, och den andra I Calais. Man har tre huvudsakliga marknader i form av lager, som ligger i Skillingaryd, Prag och Nancy. Produkterna som produceras innehåller flera olika råvaror och komponenter, men i detta problem är det förenklat till att endast studera 2 alternativa komponenter, som vardera finns att tillgå dels från en leverantör i Bahia och dels en i Singapore. Det produktionsekonomiska systemet är starkt förenklat. Modelleringen går till så att 1 råvaruenhet in, av valfri komponent, också ger 1 produktenhet ut, av färdig produkt. Det innebär att man i produktionsanläggningarna kan anta nodjämvikt, dvs. flödet in till anläggningen är lika med flödet ut. Företaget har en gynnsam marknadssituation, där de kan sälja bestämda volymer med en tillräcklig vinst. Detta kan inte ske helt och hållet oberoende av var produkterna produceras eller hur transporterna sker. Man måste också ta hänsyn till ledtidskrav, så i modelleringen har bara de transportalternativ tagits med som är acceptabla ur ett kostnads- & ledtidsperspektiv. Eftersom de, givet detta, är nöjda med en tillräcklig vinst är de inte intresserade varken av att kostnadsminimera eller vinstmaximera, utan istället intresserade av att ge minimal miljöbelastning. Det är alltså möjligt att kostnaderna skulle minska genom andra alternativ än vad modellen föreslår, men företagets bedömning är att miljöprofilen är överordnad kortsiktig kostnadsminimering eller liknande. Miljöbelastningen för olika processer och transportalternativ mäts i utsläppsenheter. Man betraktar miljön som en global fråga, vilket gör att man likställer värdet av utsläppsenheter oberoende av var i världen utsläppen sker. Man räknar med att transporterna sker i tillräckligt stor omfattning, och som en marginaldel av de globala transporterna, vilket ger att man antar linjära samband när det gäller transportutsläppen i förhållande till transporterad mängd 1. Mellan leverantören i Bahia går råvarutransporterna med båt, både till Calais och Kuala Lumpur. Från leverantören i Singapore går transporterna med båt till Calais, men med lastbil till Kuala Lumpur. Då man vill upprätthålla en konkurrens mellan leverantörerna, vill man köpa minst 100 råvaruenheter från Bahia. Kapaciteten på leveranser är 500 råvaruenheter från Bahia, och i praktiken obegränsad från Singapore. Miljöbelastningen för leverantören i Bahia är 50 utsläppsenheter per råvaruenhet, medan den är 5 utsläppsenheter per råvaruenhet hos den modernare leverantören i Singapore Produktionsanläggningarna i Calais resp. Kuala Lumpur har olika teknik, vilket innebär att miljöbelastningen blir olika. I Calais är den 20 utsläppsenheter per produktenhet, och i Kuala Lumpur är den 45. Båda anläggningarna har en produktionskapacitet på 500 produktenheter. Från anläggningen i Kuala Lumpur kan transporterna av färdiga produkter ske med båt till hamnen i Rotterdam. Man kan också försörja Prag och Nancy med flyg. Eftersom man vill ha snabb leverans av en del av produktionen, krävs att minst 10 produktenheter körs med flyg till vardera Prag och Nancy. Ett upprätthållet tranportsystem med flyg, garanterar dessutom större flexibilitet vid förändrad efterfrågan på respektive marknad, även om detta ökar miljöbelastningen. Från fabriken i Calais kan transporter bara ske med lastbil, antingen till hamnen i Rotterdam, eller direkt till Prag, Nancy eller Skillingaryd. Lastbilstransporterna kan ske till alla ställen med egna 1 I verkligheten skulle t.ex. transporten av 30 ton med lastbil vara marginellt mycket mer utsläpp än att transportera första kilot med lastbilen, om inte lastbilen samtidigt kan ta en mängd andra varor. 2(5)
3 miljöanpassade lastbilar, dock med en total övre begränsning på 200 produktenheter. Ytterligare transporter, av standardbilar, kan köpas, dock endast för transporter till Rotterdam. Från hamnen i Rotterdam finns olika transportalternativ. Till Nancy kan transporter endast ske med lastbil (standardbilar). Till Skillingaryd och Prag kan transporter ske med tåg. Efterfrågan i Prag, Nancy och Skillingaryd, är 100, 200 resp. 400 enheter. Man räknar med miljöbelastning i nedanstående tabell, mätt i utsläppsenheter per produkt/råvaruenhet och länk. T.ex. betyder det att 10 transporterade enheter på länken Bahia- Calais innebär 2450 utsläppsenheter, och 10 transporterade enheter på länken Calais-Skillingaryd innebär 360 utsläppsenheter. Från/Till Transportsätt Avstå nd (km) Miljöbelastning (utsläppsenheter) per km och produktenhet 2 Miljöbelastning (utsläppsenheter) per produktenhet per länk Bahia-Calais Båt , Bahia-Kuala Lumpur Båt , Singapore-Calais Båt , Singapore- Kuala Lumpur Lastbil 300 0,05 15 Kuala Lumpur-Rotterdam Båt , Kuala Lumpur-Prag Flyg , Kuala Lumpur-Nancy Flyg , Calais-Nancy Lastbil (miljö) 300 0,03 9 Calais-Prag Lastbil (miljö) 900 0,03 27 Calais-Skillingaryd Lastbil (miljö) ,03 36 Calais-Rotterdam Lastbil (miljö) 200 0,03 6 Calais-Rotterdam Lastbil (standard) 200 0,05 10 Rotterdam-Nancy Lastbil (standard) 400 0,05 20 Rotterdam-Prag Tåg 800 0,01 8 Rotterdam-Skillingaryd Tåg ,01 10 Problemet har modellerats som ett minkostnadsflödesproblem och optimallösningen finns angiven på nästa sida. Börja med att gå igenom nätverksmodellen och jämför med er lösningen till gruppuppgift 2. Identifiera vilka bågar och noder i lösningen på nästa sida som motsvarar bågar och noder i er lösning. Ni hittar nätverket på nästa sida, och den optimala lösningen på sista sidan! Baserat på den optimala lösningen (dvs. utan att köra programmet igen), och dess nodpriser (och eventuellt beräknade reducerade kostnader), besvara följande frågor: 1) Företaget funderar på att öppna upp för möjligheten att även använda en annan typ av lastbil för direkttransport mellan Calais och Nancy. Vid vilken miljöbelastning per produktenhet kommer ett sådant alternativ att bli intressant? 2) Vad skulle det vara värt uttryckt i reducerad miljöbelastning, att kunna höja kapaciteten i miljöanpassade lastbilar för transporterna från Calais, från 200 till 201 produktenheter? 2 Miljöbelastningen som anges är en någorlunda korrekt uppskattning av antal kg koldioxidutsläpp per transporterad tonkilometer. För miljölastbilar har uppskattningen gjorts att man kan sänka utsläppen med 40%, nästan helt med känd teknik. För tåg har uppskattningen gjorts av ett medelvärde där 1/3 går med miljömärkt eltåg, och 2/3 med dieseldrivna tåg, eller oljeproducerad el. 3(5)
4 3) Vad skulle det innebära i total miljöbelastning, om efterfrågan stiger med en enhet i Prag? 5,0,M Figur 1. Minkostnadsflödesnätverk med nod och bågdata 4(5)
5 Figur 2. Optimallösning. Optimalt flöde på bågar och optimala nodpriser redovisas vid respektive nod. 5(5)
TNSL05 Optimering, Modellering och Planering. Föreläsning 10
TNSL05 Optimering, Modellering och Planering Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF
Föreläsning 10/11! Gruppuppgifter: Gruppuppgift 1: Alla har redovisat. Gruppuppgift 2: Alla har redovisat Gruppuppgift 3: På gång.
Föreläsning 10 Agenda Kursens status Repetition Flödesnätverk Optimalitetsvillkor LP och Minkostandsflöde (MKF) Nätverkssimplex Känslighetsanalys Exempel: MKF och Nätverkssimplex Föreläsning 10/11! Gruppuppgifter:
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
TNSL05 Optimering, Modellering och Planering. Föreläsning 6
TNSL05 Optimering, Modellering och Planering Föreläsning 6 Agenda Kursens status Tolkning av utdata Intro lösningsmetoder Linjära optimeringsproblem (LP) på standardform Algebraisk formulering av LP Konveitet
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TNSL05 Optimering, Modellering och Planering. Föreläsning 9
TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL05 Övningsuppgifter modellering
TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimering av NCCs klippstation för armeringsjärn
Optimering av NCCs klippstation för armeringsjärn Sammanfattning I det här arbetet har vi försökt ta reda på optimal placering av en klippningsstation av armeringsjärn för NCCs räkning. Vi har optimerat
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Föreläsning 6: Transportproblem (TP)
Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Miljövinster och miljonvinster går hand i hand!
Miljövinster och miljonvinster går hand i hand! Trafikverket är en statlig myndighet som ansvarar för långsiktig planering av transportsystemet för vägtrafik, järnvägstrafik, sjöfart och luftfart. Vi ansvarar
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2010 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010 1 Kursmål & innehåll 1.1 Mål med
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
Täbyinitiativet: Öppnar för fjärrvärme i konkurrens
Täbyinitiativet: Öppnar för fjärrvärme i konkurrens fjarrvarme_folder.indd 1 09-03-30 14.19.27 Täbyinitiativet på en minut: I Täbyinitiativet gör vi tre saker: vi bygger ett öppet fjärrvärmenät i Täby
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Föreläsning 6: Nätverksoptimering
Föreläsning 6: Nätverksoptimering. Minkostnadsflödesproblem i nätverk.. Modellering och grafteori.. Simplexmetoden. Föreläsning 6 - Ulf Jönsson & Per Enqvist Nätverksoptimering Minkostnadsflödesproblem
1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
TNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
DHL Freight Sweden GODSETDAGEN 2013 Utmaningar på väg och järnväg för att nå miljömål 2020
DHL Freight Sweden GODSETDAGEN 2013 Utmaningar på väg och järnväg för att nå miljömål 2020 Stockholm 5 Mars Ylva Öhrnell Miljö- och Kvalitetschef DHL TRANSPORTER PÅ JÄRNVÄG Viktigt för att nå vårt miljömål
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL011 Kvantitativ Logistik
TENTAMEN TNSL011 Kvantitativ Logistik Datum: 16 december 2009 Tid: 14-18 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta emot signaler
Instruktion: Totalpoäng på tentamen är 50. För betyget G krävs minst 25 poäng. För betyget VG krävs minst 37,5 poäng.
Instruktion: Totalpoäng på tentamen är 50. För betyget G krävs minst 25 poäng. För betyget VG krävs minst 37,5 poäng. Fråga 1. 15 poäng. Varje flervalsfråga ger 1 poäng vid rätt svar. 1 poäng vid fel svar.
TNSL05 Optimering, Modellering och Planering. Föreläsning 1
TNSL05 Optimering, Modellering och Planering Föreläsning 1 2018-11-05 2 Föreläsning 1, dagordning Kursadministration Lärare Mål Kurshemsida Kursmoment Gruppindelningar Examination Litteratur Optimering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola
MIO310 Optimering & Simulering 2013 Kursansvarig: Universitetslektor Fredrik Olsson, Produktionsekonomi, Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2
Marknadsekonomins grunder. Marknader, fördjupning. Thomas Sonesson, Peter Andersson
Marknadsformer Företagets beteende på marknaden, d.v.s. - val av producerad kvantitet - val av pris - val av andra konkurrensmedel varierar med de förhållanden som råder på marknaden - antal aktörer -
TNSL011 Kvantitativ Logistik
TENTAMEN TNSL011 Kvantitativ Logistik Datum: 24 augusti 2010 Tid: 08-12 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta emot signaler
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
VIDA Hållbarhetsrapport 2018
VIDA Hållbarhetsrapport 2018 Hållbarhetsrapport Vida är Sveriges största privatägda sågverkskoncern med ca 1050 anställda på 18 produktionsanläggningar, varav 9 sågverk, i södra Sverige. Produktionen är
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Hemuppgift 1, SF1861 Optimeringslära, VT 2017
Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Övningar Mikro NEGA01 Marknadsmisslyckanden Arbetsmarknaden
Övningar Mikro NEGA01 Marknadsmisslyckanden Arbetsmarknaden Henrik Jaldell Katarina Katz MARKNADSMISSLYCKANDEN 1. Anta att ett naturligt monopol har nedanstående totalkostnadsfunktion och efterfrågefunktion
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
Europas modernaste producent av flerbostadshus år 2018
Europas modernaste producent av flerbostadshus år 2018 Helena Lidelöw, Konstruktionschef Vad bygger vi? Flerbostadshus 2-8 våningar Bostadsrätter Studentlägenheter Hyreslägenheter Seniorboende Hotell Fakta
Föreläsning 11. Giriga algoritmer
Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Giriga algoritmer (Greedy algorithms)
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Simulering av Sveriges elförsörjning med Whats Best
Simulering av Sveriges elförsörjning med Whats Best Sammanfattning Projektet gick ut på att simulera elförsörjningen med programmet Whats Best för att sedan jämföra med resultaten från programmet Modest.
Kärnkraft och värmeböljor
Kärnkraft och värmeböljor Det här är en rapport från augusti 2018. Den kan även laddas ned som pdf (0,5 MB) Kärnkraften är generellt okänslig för vädret, men det händer att elproduktionen behöver minskas
Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 11 mars 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Hemuppgift 1, SF1861 Optimeringslära för T
Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon
MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola
MIO310 Optimering & Simulering 2015 Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2 Rek.
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
Föreläsning 7 - Faktormarknader
Föreläsning 7 - Faktormarknader 2012-09-14 Emma Rosklint Faktormarknader En faktormarknad är en marknad där produktionsfaktorer prissätts och omsätts. Arbetsmarknaden Individen Hela marknaden Efterfrågan
Laborationsinformation
Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 08 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Mycket kort repetition av mikrodelen på kursen Introduktion till nationalekonomi. Utbud och efterfrågan
Mycket kort repetition av mikrodelen på kursen Introduktion till nationalekonomi Utbud och efterfrågan 1 Exempeluppgift 1: Elasticiteter När inkomsterna ökade med 7 % ökade efterfrågan på bussresor med
Eksjöortens Taxi. Miljöplan
Eksjöortens Taxi Miljöplan Innehållsförteckning: Miljöpolicy...sid.3 Lagarochföreskriftersomberörverksamheten...sid.4 Bränsleförbrukningochhastighetsbestämmelser...sid.4 Rutinerochmetoderförattefterlevamiljökravenenligtavtal...sid.5
Lagermodeller & produktvärden
Lagermodeller & produktvärden Tid Är Tid = Pengar? 3- Olika tidsbegrepp Ledtid (LT) Tid från behovsinitiering / orderläggning till behovsuppfyllelse / mottagande av leverans Genomloppstid (GLT) Tid för
Välkomna till DIT012 IPGO
Välkomna till DIT012 IPGO 1 Lärare och Handledare Kursansvariga, examinatorer, föreläsare och handledare Joachim von Hacht, hajo@chalmers.se, 772 1003 Handledare (se även kurssida) Alexander Sjösten, sjosten@chalmers.se