TNSL05 Övningsuppgifter modellering
|
|
- Ann Viklund
- för 6 år sedan
- Visningar:
Transkript
1 TNSL05 Övningsuppgifter modellering 1) Ett företag tillverkar och säljer två olika typer av bord. Grundversionen, med skiva i trä, tar 0.6 timmar att sätta ihop, har fyra ben och säljs med 1500 kr i vinst. Lyxversion, med en skiva i glas, tar 1.5 timmar att sätta ihop, har fem ben och säljs med 3000 kr i vinst. För nästa vecka har företaget 300 ben, 50 träskivor, 35 glasskivor och 43 arbetstimmar tillgängliga. a) Formulera företagets problem att bestämma en produktionsplan för nästa vecka som maximerar vinsten som ett linjärt optimeringsproblem. b) Företaget kan under nästa vecka ta in extra arbetskraft motsvarande 20 arbetstimmar, till den extra kostnaden 50kr per timma. Formulera om din befintliga modell (fortfarande som ett linjärt optimeringsproblem) för att även kunna bestämma hur många timmar med extra arbetskraft som behövs. 2) En produktionsprocess ger x " enheter av en produkt i en given tidsperiod i till en kostnad av f " (x " ). I slutet av varje period säljs d " enheter och lagerhållningskostnaden är c " (y " ) där y " är det utgående lagret efter tidsperiod i. Produktionen kan ej överstiga P i en tidsperiod och lagret i en tidsperiod får ej överstiga L. Ingångslagret i tidsperiod 1 är noll, dvs. y ). Formulera problemet att minimera totalkostnaden över n tidsperioder. Definiera noggrant de variabler som används, och ange också vilka parametrar ni använder er av. 3) I ett produktionsplaneringsproblem har man deklarerat variabeln I +, som den kvantitet av produkt j = 1,..., n som finns i lager i slutet av tidsperiod t. Låt oss anta att det går åt lagerytan v + att lagra en enhet av produkt j. Formulera bivillkor som uttrycker att den sammanlagda lageryta som används i slutet av någon av tidsperioderna t = 1,..., T inte överskrider A. 4) Ett fraktflygplan har tre skilda utrymmen där varor kan fraktas: främre, mitten och bakre. Dessa tre utrymmen har följande begränsningar avseende vikt och volym: Utrymme Viktkapacitet(ton) Volymkapacitet (kubikmeter) Främre 5 68 Mitten Bakre Följande två varor är tillgängliga att skicka med nästa flygning: Vara Vikt (ton) Volym (kubikmeter/ton) Vinst (kr/ton) C C Det är möjligt att välja att endast skicka en del av den totala tillgången av en vara och varje vara kan dessutom delas upp och lastas i flera olika utrymmen. Problemet är att bestämma hur mycket av varje vara C1 och C2 som ska lastas samt hur varorna ska vara fördelade mellan de olika utrymmena så att den totala vinsten av den kommande flygningen maximeras. a. Formulera problemet som ett linjärt optimeringsproblem b. För att tillåtas att lyfta måste flygplanet vara väl balanserat. Därför måste proportionen mellan vikten på de lastade varorna och viktkapaciteten i respektive utrymme vara lika för samtliga tre utrymmen. Gör tillägg till modellen så att detta villkor uppfylls.
2 5) En pub som håller på att öppnas ska anställa personal. Nyckelbefattningarna är redan klara men man behöver anställa minst 5 personer ytterligare (fasta heltidstjänster) för att klara den dagliga driften. Totalt har man fått in 10 sökande som är listade tillsammans med sin begärda månadslön (i tusentals kronor). Dessutom är de tre kompetensområdena kock, ölkunskap och bartender markerade för varje person. K=Kockutbildning, Ö=Diplomerad ölkännare, B=Utbildad bartender. Asta, 25, B Bodil, 27, KÖ Cecilia, 20, Ö David, 22, B Erik, 23, K Frida, 22, B Gunnar, 29, ÖB Helen, 21, Ö Inge, 24, KB Johanna, 29, KB Puben vill minimera sina lönekostnader, och följande optimeringsproblem har formulerats. Låt x " vara 1 om person i anställs och 0 annars, i = A(sta), B(odil), C...J min z = 25x x x ; + 22x < + 23x > x B + 21x D + 24x F + 29x G G då "H6 x " 5 (minst 5 måste anställas) x " 0,1, i = A, B J Förutom att det krävs fem anställda för att klara den dagliga skötseln finns det andra krav som man vill ta hänsyn till vid anställningen. 1. Samtliga kompetenser måste finnas representerade bland personalen (behöver dock inte vara olika personer). 2. Bodil och Gunnar har tidigare varit ett par, och vill absolut inte arbeta tillsammans, de är därför bara intresserade av jobbet om bara den ena personen får anställning. 3. Erik är nyutbildad kock och behöver handledning. Endast Bodil har tillräckligt mycket erfarenhet för att handleda, och om Erik anställs måste därför också Bodil anställas. 4. Facket har bedömt bartenderjobbet som ett högriskjobb eftersom det är vanligt att man får citronsaft i ögonen. Ensamarbetande bartenders får därför ett extra lönepåslag om 2000 kr (dvs. en extra kostnad om 2000 kr om endast en bartender anställs). Tips: Skapa en ny 0/1 variabel som antar värdet 1 om endast en bartender anställs, och 0 annars 0. Gör tillägg i modellen så att ovanstående villkor kan hanteras.
3 6) Ett företag som sänder tv i Sverige har köpt rättigheterna till nästa sommar OS. Företaget har två olika kanaler (kanal A och B i det digitala marksända tv-nätet) som man kan sända i samtidigt. Intäkterna består av reklam som visas under sändningarna. För att bestämma vilka idrott under OS som ska visas i vilken kanal har man tänkt ta hjälp av en optimeringsmodell. För att förenkla modellen tittar vi här endast på en av OS dagarna. I tabellen nedan visas de olika idrotterna som finns på programmet denna dag, tillsammans med information om vilken tid de startar respektive slutar. Genom budgivning från annonsörer vet man också vilken reklamintäkt man kan få för respektive idrott. Idrott nr Beskrivning Tid kl. från-till Reklamintäkt per timma (i SEK) Kanal A Kanal B 1 Bordtennis Boxning Brottning Bågskytte Cykel Fotboll Friidrott Gymnastik Hästsport Segling Simning Tennis TV bolaget vill maximera sin intäkt genom att för varje tidsperiod bestämma vilken idrott som ska visas i kanal A respektive kanal B. Alla idrotter måste inte visas. För att förenkla planeringen delas dagen upp i tio tidsperioder som motsvarar timmarna mellan 8 och 18, tidsperiod 1 motsvara den timma som börjar kl 8.00, osv.. Observera att det är tillåtet att visa en idrott i flera kanaler, men inte samtidigt. Exempelvis kan cykel visas i kanal A från för att sedan visas i kanal B från för att sedan visas i kanal A från På nästa sida formuleras optimeringsmodellen.
4 Följande variabeldefinition har gjorts x "QR = 1, om idrott i visas under tidsperiod j i kanal k, i=1,,12, j=1,,10, k=a,b 0, annars Följande parametrar har identifierats a "R = reklamintäkten per timma för idrott i, när idrotten sänds i kanal k, i=1,,12, k=a,b, b "Q = 1 om idrott i pågår under tidsperiod j, i=1,,12, j=1,,10, 0 annars Målfunktion XY X) 9 max w = a "R x "QR "HX QHX RH6 då x "Q6 + x "Q9 b "Q, i = 1,,12, j = 1,,10 (en idrott i kan endast visas i kanal A eller B om den pågår under tidsperiod j, detta villkor säkerställer också att en idrott aldrig visas i båda kanalerna samtidigt) Inga ytterligare variabler eller parametrar behöver definieras för att lösa dessa uppgifter. a) Formulera bivillkor som säkerställer att en kanal inte planerar att visar flera idrotter under samma tidsperiod. b) Det är tillåtet att endast visa en del av en idrott, men en idrott som man har börjat visa måste man fortsätta visa för alla återstående tidsperioder som den pågår under (dock inte nödvändigtvis i samma kanal). Lägg till bivillkor som säkerställer att detta krav uppfylls. För att exemplifiera kravet kan vi ta fallet då vi väljer att börja sända bordtennis från kl 16, vilket är tillåtet, men detta medför då att man måste sända bordtennisen ända fram till kl 18.
5 7) Minkostnadsflödesnätverk Ett företag som konserverar och säljer frukt har två fabriker, A respektive B. Produktionskapaciteten är 450 respektive 550 ton, och arbetskostnaden är 250 kr/ton respektive 200 kr/ton. Tre fruktodlare erbjuder 300, 700 respektive 500 ton färsk frukt till ett pris av 100, 90 respektive 160 kr/ton. 1 ton frukt blir i fabriken till 1 ton konserverad frukt. Transportkostnaden (kr/ton) mellan fruktodlarna och fabrikerna ges av följande tabell: Till Fabrik A Till Fabrik B Från odlare Från odlare Från odlare Den konserverade frukten säljs för 500 kr/ton. Företaget kan sälja allt som produceras. Formulera företagets problem att maximera vinsten, som ett minkostnadsflödesproblem. Rita nätverket och ange nod- och bågdata. Lös ej!
6 8) Minkostandsflödesnätverk a) Företaget Bilsprit tillverkar fordonsetanol för den svenska marknaden. Tillverkningen sker i någon av företagets två fabriker (F), och den färdiga etanolen transporteras sedan till någon av de två depåerna (D), för att sedan distribueras till någon av de tre kunderna (K). Transportkostnaderna (per 1000 liter) mellan fabrikerna och depåerna ges i Tabell 1, samt mellan depåerna och kunderna i Tabell 2. Tillgången på etanol från respektive fabrik och efterfrågan hos respektive kund för den kommande månaden ges i Tabell 3, där den totala kapaciteten är lika med den totala efterfrågan. Depåerna har en begränsning på antalet liter etanol som kan hanteras per månad och ges i Tabell 3. Formulera Bilsprits problem att minimera sina transportkostnader under den kommande månaden som ett minkostnadsflödesproblem. Rita nätverket och ange nod- och bågdata. Lös ej! b) Anta att fabrikerna kan producera mer etanol än vad efterfrågan kräver, och kapaciteterna för respektive fabrik är liter under en månad. Däremot skiljer sig produktionskostnaden åt mellan fabrikerna och kostnaden att producera 1000 liter etanol ges i tabellen nedan. Formulera om minkostnadsflödesproblemet från a- uppgiften för att även kunna bestämma hur mycket etanol som varje fabrik ska tillverka för att minimera den totala kostnaden (produktion och transport). Fabrik F1 F2 Kostnad
1(8) x ijt = antal mobiltelefoner av typ i=1,,m, Som produceras på produktionslina 1,, n, Under vecka t=1,,t.
1(8) (5p) Uppgift 1 Företaget KONIA tillverkar mobiltelefoner I en stor fabrik med flera parallella produktionslinor. För att planera produktionen de kommande T veckorna har KONIA definierat följande icke-negativa
Tentamensinstruktioner
TNSL05 (6) TENTAMEN Datum: augusti 07 Tid: 8- Provkod: TEN Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt p, betyg kräver
Tentamensinstruktioner
TNSL05 1(8) TENTAMEN Datum: 1 april 2016 Tid: XXX Sal: XXX Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: 6 april 2018 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Tentamensinstruktioner
TNSL05 1(9) TENTAMEN Datum: augusti 017 Tid: 8-1 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 1 p, betyg
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 21 april 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Tentamensinstruktioner
TNSL05 1(7) TENTAMEN Datum: 1 april 2016 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p,
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO0 OPTIMERING
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Laboration 1 - Simplexmetoden och modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 29 januari 2017 Laboration 1 - Simplexmetoden och modellformulering Den första delen av laborationen
De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera
Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
TENTAMEN. Tentamensinstruktioner. Datum: 30 augusti 2018 Tid: 8-12
1( 9) TENTAMEN Datum: 30 augusti 2018 Tid: 8-12 Provkod: TEN1 Kursnamn: Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12 p, betyg kräver
TNSL05, Optimering, Modellering och Planering Gruppuppgift 3
ITN/KTS Joakim Ekström/Marcus Posada Gruppuppgift 3 TNSL05, Optimering, Modellering och Planering, HT2018 TNSL05, Optimering, Modellering och Planering Gruppuppgift 3 1 Gruppspecifika uppgifter 1.1 Kursmomentet
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 2(8) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F2. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering
Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Vinsten (exklusive kostnaden för inköp av kemikalier) vid försäljning av 1 liter fönsterputs är 2 kr för F1 och 3 kr för F3.
TNSL05 (10) (5p) Uppgift 1 Företaget XAJA tillverkar två olika sorters rengöringsprodukter för fönsterputsning, benämnda F1 och F. Förutom vatten, som ingår i båda produkterna är, innehållet ett antal
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Laboration 2: Spelteori
Linköpings Tekniska Högskola TNK047 Optimering och systemanalys ITN Laboration 2 13 november 2008 Laboration 2: Spelteori Laborationen består av två delar, den första om 2-personersspel och andra om ett
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TNSL05 Optimering, Modellering och Planering. Föreläsning 5
TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning
Laboration 2: Spelteori
Linköpings Tekniska Högskola TNK047 Optimering och systemanalys ITN Laboration 2 12 november 2007 Laboration 2: Spelteori Organisation och redovisning Laborationen består av två delar, den första om 2-personersspel
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Examinator: Torbjörn Larsson Jourhavande lärare: Torbjörn Larsson, tel Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 21 augusti 2012 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
TNSL05 Optimering, Modellering och Planering. Föreläsning 9
TNSL05 Optimering, Modellering och Planering Föreläsning 9 Agenda Kursens status Dualitet Billigaste väg problem 208-2- Kursens status Föreläsning (), 2-5: Modellering Föreläsning 6-0, () Lösningsmetod/känslighetsanalys
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
1 Minkostnadsflödesproblem i nätverk
Krister Svanberg, april 2012 1 Minkostnadsflödesproblem i nätverk Ett nätverk består av en given mängd noder numrerade från 1 till m (där m är antalet noder) samt en given mängd riktade bågar mellan vissa
TENTAMEN Tillämpad Systemanalys 5hp
Tentamenskod (6 siffror) (alt. namn och personnummer) Utbildningsprogram Termin och år då du först registrerades på kursen Bordsnummer Klockslag för inlämning TENTAMEN Tillämpad Systemanalys 5hp Tid: 2012-0-11,
Optimering av NCCs klippstation för armeringsjärn
Optimering av NCCs klippstation för armeringsjärn Sammanfattning I det här arbetet har vi försökt ta reda på optimal placering av en klippningsstation av armeringsjärn för NCCs räkning. Vi har optimerat
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 19 oktober 2017 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Instruktion för Kalkylering av kostnader
Instruktion för Kalkylering av kostnader Version 2010.08 Medvind Informationsteknik AB Innehållsförteckning Innehållsförteckning... 2 Kalkylering... 3 Underlag för kalkylering... 3 Att göra en kalkyl...
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg.
Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2015-01-14 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Givna data:
Tentamensinstruktioner
TNSL05 1(11) TENTAMEN Datum: 14 januari 2017 Tid: 14-18 Provkod: TEN1 Kursnamn: TNSL05 Optimering, modellering och planering Institution: ITN Antal uppgifter: 5 Betygskrav: För godkänt krävs normalt 12
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 11 mars 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
Föreläsning 6: Transportproblem (TP)
Föreläsning 6: Transportproblem (TP) 1. Transportproblem 2. Assignmentproblem Föreläsning 6 Ulf Jönsson & Per Enqvist 1 Transportproblem Transportproblem Varor ska transporteras från fabriker till varuhus:
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNK049 Optimeringslära
TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk
MIO310 OPTIMERING OCH SIMULERING, 4 p
Uppvisat terminsräkning ( ) Ja ( ) Nej Inst. för teknisk ekonomi och logistik Avd. för Produktionsekonomi Jag tillåter att mitt tentamensresultat publiceras på Internet Ja Nej TENTAMEN: MIO310 OPTIMERING
Genusfördelning inom 20 idrotter i Malmö 2002-2008. Utifrån LOK-stödet
Genusfördelning inom 2 idrotter i Malmö - Utifrån LOK-stödet Urval och indelning Vi har valt ut 2 av ca 45 olika idrotter som har varit aktiva inom Malmö Stad under perioden - och registrerats inom RF:s
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
Introduktion till nationalekonomi. Föreläsningsunderlag 4, Thomas Sonesson. Marknadens utbud = Σ utbud från enskilda företag (ett eller flera)
Produktion Marknadens utbud = Σ utbud från enskilda företag (ett eller flera) Företaget i ekonomisk teori Produktionsresurser FÖRETAGET färdiga produkter (inputs) (produktionsprocesser) (output) Efterfrågan
ANDREAS REJBRAND NV1A Matematik Linjära ekvationssystem
ANDREAS REJBRAND NVA 004-04-05 Matematik http://www.rejbrand.se Linjära ekvationssystem Innehållsförteckning LINJÄRA EKVATIONSSYSTEM... INNEHÅLLSFÖRTECKNING... DEFINITION OCH LÖSNINGSMETODER... 3 Algebraiska
Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper
CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod T0002N Kursnamn Logistik 1 Datum 2012-10-26 Material Fördjupningsuppgift Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
c) Vid vilka tillverkade kvantiteter gör företaget åtminstone någon vinst?
Gruppövning 4 4.1 Monopolmarknad a) Vid vilken tillverkad kvantitet maximerar företaget sin vinst? Se. b) Vilket pris sätter företaget? Se mo c) Vid vilka tillverkade kvantiteter gör företaget åtminstone
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS
TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 7 april 2010 Tid: 8 12 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p. Poängkrav:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 08 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Övningar Mikro NEGA05 (Matematikekonomi) Marknadsmisslyckanden Arbetsmarknaden
Övningar Mikro NEGA05 (Matematikekonomi) Marknadsmisslyckanden Arbetsmarknaden Henrik Jaldell Katarina Katz MARKNADSMISSLYCKANDEN 1. Anta att ett naturligt monopol har nedanstående totalkostnadsfunktion
Övningar Mikro NEGA01 Marknadsmisslyckanden Arbetsmarknaden
Övningar Mikro NEGA01 Marknadsmisslyckanden Arbetsmarknaden Henrik Jaldell Katarina Katz MARKNADSMISSLYCKANDEN 1. Anta att ett naturligt monopol har nedanstående totalkostnadsfunktion och efterfrågefunktion
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Mikroekonomi Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SMI01A ACEKO17h, ACIVE17h, Fristående kurs 7,5 högskolepoäng Tentamensdatum: 2018 03 23 Tid: 14.00 19.00 Hjälpmedel: Miniräknare
GYMNASIECASET Adresseras till: Marknadsföringsutskottet I-sektionen Kårallen Linköpings Universitet
GYMNASIECASET 2018 Information till läraren Stort tack för att er skola vill vara med och delta i Gymnasiecaset 2018! Vi från Industriell ekonomi vid Linköpings Universitet hoppas att detta blir en utmärkt
TNK047 OPTIMERING OCH SYSTEMANALYS
TNK047 OPTIMERING OCH SYSTEMANALYS Datum: 18 december 2006 Tid: 14 18 Hjälpmedel: Ett A4-blad med egna anteckningar (båda sidor) samt miniräknare. Antal uppgifter: ; Vardera uppgift kan ge p. Poängkrav:
Agenda Sex grundläggande ekonomiska begrepp Resultat, Lönsamhet Indelning av kostnader
Agenda Sex grundläggande ekonomiska begrepp Resultat, Lönsamhet Indelning av kostnader 1 Terminologi Utgift - värdet av anskaffad resurs (fakturan bokförs) Inkomst värdet av utförd prestation (fakturerad)
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
Laborationsinformation
Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för
3. Hur snabbt förändras diametern av en cirkel med avseende på cirkelns area?
Dagens 30 aug: a, 2, 3, 5, 6.. Låt Q vara antalet producerade enheter. Bestäm a. Marginalvinsten för vinstfunktionen π(q) = 3Q + Q + 2. Marginalintäkten för intäktsfunktionen R(Q) = ( + 2Q) 3/2. c. Marginalkostnaden