Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Storlek: px
Starta visningen från sidan:

Download "Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition"

Transkript

1 Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller ingen cykel. En enkel cykel innehåller ingen mindre cykel. En sammanhängande graf har en väg mellan varje par av noder. Träd: Sammanhängande graf utan cykler. Sats Träd För ett träd med n (> ) noder gäller: et har n bågar. Mellan varje par av noder finns en unik väg. Om en ny båge läggs till skapas exakt en cykel. Om en båge tas bort bildas två träd. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Uppspännande träd Sats För en graf med n noder är följande begrepp ekvivalenta: Ett uppspännande träd. En sammanhängande graf med n bågar. En graf utan cykler med n bågar. En graf är sammanhängande om och endast om den innehåller ett uppspännande träd. efinition Skog: Graf utan cykler (dvs ett eller flera träd). Grafer Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / efinition En fullständig graf har en båge mellan varje par av noder. efinition I en tudelad graf går alla bågar från en nodmängd till en annan. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

2 Grafer efinition En plan graf kan ritas så att inga bågar korsar varandra (förutom i noderna). Plan? Ja, plan. ykler och vägar efinitioner En Eulercykel är en cykel som använder varje båge exakt en gång. En Hamiltoncykel är en cykel som passerar varje nod exakt en gång. En Hamiltonväg är en väg som passerar varje nod exakt en gång. Exempel på frågeställningar: Finns en Eulercykel i en given graf? Finns en Hamiltoncykel i en given graf? efinition En nods valens är antalet bågar som ansluter till noden. Sats En sammanhängande oriktad graf har en Eulercykel om och endast om alla dess noder har jämn valens. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Hamiltoncykel Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Notation: mängder δ(i) : bågarna som ansluter till nod i. δ + (i) : bågarna som kommer in till nod i δ (i) : bågarna som går ut ur nod i. 9 δ () : de bågar som går ut ur. δ + () : de bågar som går in till δ() : de bågar som har en av sina ändnoder i. 0 γ() : de bågar som har båda sina ändnoder i. x(e) = x ij, c(e) = (i,j) E (i,j) E c ij Petersens graf saknar Hamiltoncykel och Eulercykel. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

3 Nodmängder Oberoende nodmängd: Ingen direktbåge mellan två noder. Nodövertäckning: Varje båge ansluter till minst en nod. Nodmängder En klick är en fullständig subgraf. En nodövertäckning kan fås genom att ta med de noder som inte ingår i en oberoende nodmängd (och tvärtom). Kaj Holmberg (LiU) TOP/TOP Optimering september 0 9 / ågmängder ågövertäckning: Varje nod ansluter till en båge. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 0 / Graffärgning Nodfärgning: Inga två närliggande noder har samma färg. Matchning: Varje nod ansluter till högst en båge. En perfekt matchning innehåller alla noder. ågfärgning: Inga två angränsande bågar har samma färg. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

4 Intressanta optimeringsproblem Maximal oberoende nodmängd, n O. Minimal nodövertäckning, n. Maximal klick, n K. Minimal bågövertäckning, m. Maximal matchning, m M. Nodfärgning med min antal färger, χ. ågfärgning med min antal färger, χ. Satser n O m och m M n. n O + n = N = m M + m. För tudelad graf: m M = n. n O = m. χ =. χ n K. (En graf kallas perfekt om χ = n K.) Varje plan graf kan färgas med fyra färger. Intressanta optimeringsproblem ågfärgning med min antal färger, χ. Satser χ v MX. χ v MX +. (v MX är grafens maxvalens.) χ är v MX eller v MX +, men det är NP-fullständigt att avgöra vilket. Satser χ = om och endast om grafen är en matchning. χ = v MX om grafen är tudelad. χ = v MX om grafen är plan, saknar parallella bågar och har v MX. Metoder? Heuristiker. (Kommer senare.) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / illigaste uppspännande träd (MST) Finn ett billigaste uppspännande träd i en given oriktad graf med bågkostnader. 0 Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Heltalsformulering av MST Variabeldefinition: x ij = om båge (i, j) ingår i trädet, 0 om inte, för alla (i, j). min då (i,j) (i,j) c ij x ij x ij = N x ij S för alla S N (Inga cykler.) i S j S x ij {0, } lternativt: i S j N\S för alla (i, j) x ij för alla S N (Sammanhängade.) Många bivillkor. (Exponentiellt många.) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

5 MST Graf-baserade lösningsmetoder: eller min c T x då x() = N x(γ(s)) S för alla S N x {0, } m x(δ(s)) för alla S N Ett uppspännande träd har n bågar, samt saknar cykler är sammanhängande Två metodprinciper:. Ta med billigaste återstående bågen, om ingen cykel bildas (Kruskals metod).. Ta med billigaste bågen som utökar delträdet (Prims metod). Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kruskals metod:. Finn billigaste återstående båge. Ta bort bågen ur listan.. Om bågen ej bildar cykel, ta med den. (nnars släng den.). Om antal bågar är n : Stopp. nnars gå till. Komplexitet: O( log ) (sortera bågarna först) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Prims metod: 0. Låt nod vara delträdet.. Finn billigaste båge ut från delträdet.. Ta med den och dess andra ändnod i delträdet.. Om antal bågar är n : Stopp. nnars gå till. 0 0 Kaj Holmberg (LiU) TOP/TOP Optimering september 0 9 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 0 /

6 Prims metod (bättre implementering) Handelsresandeproblemet (TSP) Finn en billigaste Hamiltoncykel i en given graf med bågkostnader. Håll reda på trädets närmaste granne till nod i, w i. Spara möjliga nodmärkningar. 0. Låt nod vara delträdet och sätt w i = för alla andra noder i.. Finn billigaste båge ut ur delträdet: min i c i,wi.. Ta med bågen i delträdet.. Uppdatera w i via den nya bågen. (Närmare granne?). Om antal bågar är n : Stopp. nnars gå till. 0 Komplexitet: O( N ) Handelsresandeproblemet med återbesök (TSPr): Finn billigaste cykel i grafen som besöker varje nod minst en gång. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Handelsresandeproblemet: varianter Specialfall: TSP: Symmetrisk kostnadsmatris som uppfyller triangelolikheten: c ij c ik + c kj för alla k, i, j. (Implicerar fullständig graf.) Specialfall: TSPb: Symmetrisk kostnadsmatris som uppfyller den begränsade triangelolikheten: c ij c ik + c kj för alla bågar som finns. TSP har samma lösning som TSPr. (Återbesök lönar sig aldrig.) Till varje TSP med lösning finns ett TSPb som har samma optimala lösning. (ddera en konstant till alla kostnader.) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Heltalsformulering av TSP, riktad graf Variabeldefinition: x ij = om båge (i, j) ingår i cykeln, 0 om inte. min då (i,j) c ij x ij x ij = för alla j (en in till varje nod) i N x ij = för alla i (en ut från varje nod) j N i S j N\S x ij {0, } x ij för alla S N (sammanhängande) för alla (i, j) eller x ij S för alla S N (inga småcykler) i S j S (ej TSPr) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

7 TSP, oriktad graf min c ij x ij (i,j) x ij = för alla j (valens två) i N x ij för alla S N (sammanhängande) i S j N\S x ij {0, } för alla (i, j) För TSPr: Ta bort första bivillkoren. lternativ (ej för TSPr): x ij S för alla S N (inga småcykler) i S j S Observera likheten i formulering med MST. TSP är dock mycket svårare. TSP, kort notation Riktat: min c T x då x(δ (i)) = i N x(δ + (i)) = i N x(γ(s)) S S N x {0, } m eller x(δ (S)) S N Oriktat: min c T x då x() = N x(δ(i)) = i N x(γ(s)) S S N x {0, } m eller x(δ(s)) S N Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Relaxation av TSP: -träd Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Förbättring av -träd illigaste -träd: Ett MST för noderna {,,..., n}, plus de två billigaste bågarna som ansluter till nod. (lltså inte ett träd.) Rätt antal bågar. Nod får valens, men andra noder kan ha fel valens. En cykel (som kan vara för liten) bildas genom nod. Lika lätt att hitta billigaste -träd som MST. Ett -träd är en Hamiltoncykel om varje nods valens är lika med två. Om billigaste -träd är en Hamiltoncykel, är turen optimal. Nodstraff: ddition av konstant till c för alla bågar som ansluter till en nod ändrar ej optimal handelsresandetur. lla tillåtna lösningar blir c dyrare. Finn billigaste -träd. Stopp om Hamiltoncykel fås. Optimum. Välj en nod med för hög valens. Öka kostnaderna för alla bågar som ansluter till noden med t.ex.. Gå till. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

8 Försök få tillåten tur Exempel: -träd Utgå från en lösning där alla noder inte har valens två, t.ex. ett billigaste -träd. Mål: Försök få en tillåten lösning genom att byta enstaka bågar. yt en ändnod för enstaka bågar, från noder med för hög valens till noder med för låg. För att behålla en sammanhängande lösning: Gör förändring i cykler. Lägg till en båge till en nod med för låg valens. å bildas alltid en cykel. Ta bort en båge i cykeln, så att valenserna förbättras (och kostnaden inte ökar för mycket). 9 Upprepa några gånger. illigaste -träd. Kostnad:. Inget garanterat resultat. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 9 / Exempel: TSP Kaj Holmberg (LiU) TOP/TOP Optimering september 0 0 / Exempel: TSP: Nodstraff -träd. Noder med fel valens. Lägg till båge. Ta bort en annan. Upprepa. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / -träd. Nod med hög valens. Öka kostnader. -träd. Upprepa. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

9 Exempel: TSP TSP: LP-relaxation LP-relaxationen samt relaxation av sammanhängandekrav: Kan ge lösningsgraf (där x ij > 0) som ej är sammanhängande. Lägg till det bivillkor som ej uppfylls. Lös LP-relaxationen. Identifiera en nodmängd S som ej är sammanhängande med övriga noder, dvs. finn S : x(δ(s)) = 0. Lägg till bivillkoret x(δ(s)) och lös om LP-relaxationen. Om lösningen inte är sammanhängande, gå till. Optimal TSP-tur. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Steinerträdsproblemet Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Steinerträd Givet: Graf G = (N, E), en nodmängd N N och bågkostnader c. Ett Steinerträd måste omfatta samtliga noder i N men får också omfatta noder i N \ N. Steinerträdsproblemet: Finn ett Steinerträd med minimal kostnad. Modell: min c T x då x(δ(s)) S N, S N, (N \ S) N x {0, } m Om en måste-nod ligger i S och en annan måste-nod ligger i icke-s, så ska S vara förbunden med icke-s. Mittennoden behöver inte vara med, men det blir billigare att ta med den. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

10 Ruttplaneringsproblemet Ett antal lastbilar skall köra ut varor till ett antal kunder. Varje lastbil startar i en depå, kör runt till några kunder och levererar varor och återvänder till depån. Lastbilarna har begränsad lastkapacitet och kunderna given efterfrågan. Matchningsproblemet Matchning: Högst en av bågarna ansluter till någon nod. Matchning med maximal kardinalitet (max antal bågar): max då i j x ij (x ij + x ji ) för alla i j x ij {0, } för alla i, j eller max e T x då x(δ(i)) i N, x {0, } m Varje lastbil kör en handelsresandetur i en mängd noder som ska bestämmas. Samtliga noder skall täckas av någon tur. Målfunktion: Minimera kostnaden eller avgasutsläppen eller en kombination av dem. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Matchningsproblemet Perfekt matchning: samtliga noder har valens ett. Perfekt matchning med minimal vikt: min c ij x ij då eller i j (x ij + x ji ) = för alla i j x ij {0, } för alla i, j min c T x då x(δ(i)) = i N, x {0, } m Matchning med maximal vikt: max c ij x ij under samma bivillkor eller i j max c T x då x(δ(i)) i N, x {0, } m Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Metod för matchning med max kardinalitet lternerande väg: Varannan båge ingår i matchningen. Utökande väg: Första och sista bågen ingår ej i matchningen. En bättre matchning (en båge mer): yt matchad båge mot omatchad längs en utökande väg. Sats (erge 9) En matchning är maximal om och endast om det inte finns någon utökande väg. Metod: Så länge det finns minst två omatchade noder: Från varje omatchad nod: Finn en utökande väg. yt matchning längs vägen. ntingen finner man en utökande väg, och noden blir matchad, eller så finner man inte det, vilket bevisar att noden inte kan matchas. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 9 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 0 /

11 Metod för matchning med max kardinalitet Metod för matchning med max kardinalitet Hur finner man utökande väg?. Välj en omatchad nod, i, och märk den med.. Välj en omatchad båge (i, j), där nod i är märkt med och nod j omärkt. Märk nod j med +.. Välj en matchad båge (i, j), där nod i är märkt med + och nod j omärkt. Märk nod j med.. Upprepa och tills en omatchad nod, j, blir märkt med +.. Nysta upp en alternerande väg från i till j. Obs: Vägen kan antingen vara en enda omatchad båge, eller måste innehålla minst en matchad båge. Om det inte finns någon båge i steg, måste man upprepa steg. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Metod för matchning med max kardinalitet tt leta efter en utökande väg: En matchning. Välj en omatchad nod. Omatchad båge (,). Matchad båge (,). Omatchad båge (,). Matchad båge (,). Omatchad båge (,). Utökande väg: yt. En bättre matchning. Maximal, ty bara en omatchad nod. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Metod för matchning med max kardinalitet Lätt för tudelade grafer. (Jämför tillordningsproblemet.) Men om inte tudelat: Kan innehålla udda cykel. En udda cykel med k bågar och (k )/ matchade bågar kallas blomma. Kan inte blir bättre. Edmonds metod: Krymp ihop blomman till en nod. Fortsätt som förut. När utökande väg finnes: Expandera blomman. Ev. behöver matchningen i den vridas. Polynomisk optimerande metod. En matchning. En blomma. Krymp den. Utökande väg: yt. Expandera blomman. Vrid blommans matchning. En bättre matchning. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

12 Metod för bågfärgning Metod för tudelad bågfärgning I en bågfärgning utgör bågarna som färgats med en färg en matchning. Metod:. Finn en matchning med maximal kardinalitet.. Färga matchade bågar med en färg.. Ta bort färgen och de matchade bågarna. Upprepa tills inga bågar är kvar. Matchningen behöver inte vara maximal. et räcker om den täcker alla noder med maximal valens. å minskar den maximala valensen i varje steg, så antalet iterationer är inte mer än maxvalensen (vilket är mindre än antalet noder). enna metod löser problemet i tudelade grafer exakt, och är en bra heuristik för andra grafer. En matchning. Färga den röd. Ta bort bågarna. En ny matchning. Färga den blå. Ta bort bågarna. En ny matchning. Färga den grön. Färdig. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kinesiska brevbärarproblemet En brevbärartur är en tur som använder varje båge minst en gång. Kinesiska brevbärarproblemet et kinesiska brevbärarproblemet är att finna en brevbärartur med minimal kostnad. Königsbergs broar: (Euler, 00-talet) Försök finna en tur som passerar varje bro en gång. Pregel Königsberg En Eulercykel är en cykel som använder varje båge i grafen exakt en gång. En Eulercykel är en optimal brevbärartur, om den finns. Pregel Königsberg En oriktad graf har en Eulercykel om och endast om den är sammanhängande och alla dess noder har jämn valens. et fanns inget promenadstråk genom Königsberg som passerade varje bro exakt en gång. (Se nodvalens.) Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

13 Kinesiska brevbärarproblemet: Modell Matematisk modell: x ij : antalet gånger båge (i, j) trafikeras. z i : antal gånger nod i passeras i turen. min c ij x ij eller då i j (x ij + x ji ) z i = 0 för alla i j x ij, heltal z i, heltal min c T x då x(δ(i)) z i = 0 i N x, heltal z, heltal för alla i, j för alla i Kaj Holmberg (LiU) TOP/TOP Optimering september 0 9 / Kinesiska brevbärarproblemet: Exempel Kinesiska brevbärarproblemet Sats et finns en optimallösning med x (om c 0). (vs. ingen båge används mer än en gång för mycket.) Metod: Minimera extraarbetet. vs. minimera kostnaden för de bågar som används mer än en gång. Lägg till bågar mellan noder med udda valens, så att alla noder får jämn valens, på billigaste sätt. En Eulercykel ger då den billigaste brevbärarturen.. Förbind noderna med udda valens på billigaste sätt (mha billigaste-väg och minimal perfekt matchning).. Finn Eulercykeln. Polynomisk optimerande metod. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 0 / Kinesiska brevbärarproblemet 0 Königsberg: 9 Finn Eulercykel. Kostnad: + =. 9 Kaj Holmberg (LiU) TOP/TOP Optimering september 0 / Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

14 Kinesiska brevbärarproblemet ddera bågarna i billigaste perfekta matchning. Finn valfri Eulercykel. 9 Pregel Königsberg Exempel på tur: En söndagspromenad i Königsberg. Kaj Holmberg (LiU) TOP/TOP Optimering september 0 /

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg

Läs mer

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.

N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod. Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Algoritmkomplexitet. Komplexitet Teoretisk bas för frågorna: Är en viss metod bra eller dålig? Är ett visst problem lätt eller svårt?

Algoritmkomplexitet. Komplexitet Teoretisk bas för frågorna: Är en viss metod bra eller dålig? Är ett visst problem lätt eller svårt? Komplexitet Teoretisk bas för frågorna: Är en viss metod bra eller dålig? Är ett visst problem lätt eller svårt? Teori och praktik inte alltid överens, men i stort sett... Algoritmkomplexitet: Hur många

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 28-5-3 Kaj Holmberg Lösningar Uppgift a: P: Grafisk lösning ger x = 2/7 = 2 6/7,

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Kaliningrad) låg vid bägge sidor av floden Pregel samt på

Kaliningrad) låg vid bägge sidor av floden Pregel samt på Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-08-31 Kaj Holmberg Lösningar Uppgift 1 1a: Inför slackvariabler x 5, x 6 och

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:

min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ: Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j

Läs mer

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats.

Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet. Specialfall av minkostnadsflödesproblemet. Slutsats. Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 2018-01-02 Kaj Holmberg Lösningar Uppgift 1 1a: Den givna startlösningen är tillåten

Läs mer

Föreläsning 12+13: Approximationsalgoritmer

Föreläsning 12+13: Approximationsalgoritmer Föreläsning 12+13: Approximationsalgoritmer Många av de NP-fullständiga problemen är från början optimeringsproblem: TSP, Graph Coloring, Vertex Cover etc. Man tror att P NP och att det alltså inte går

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna

Läs mer

Optimeringslära Kaj Holmberg

Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 28--24 Kaj Holmberg Uppgift Lösningar a: Målfunktionen är summan av konvexa funktioner (kvadrater och

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Föreläsningsanteckningar F6

Föreläsningsanteckningar F6 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 5

TNSL05 Optimering, Modellering och Planering. Föreläsning 5 TNSL5 Optimering, Modellering och Planering Föreläsning 5 Dagordning Kort repetition Graf/nätverk: Begrepp Representation Exempel: Minkostnadsflödeproblem Billigastevägproblem 28--5 4 Hittills Föreläsning

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk

Läs mer

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter

LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om grafer Mikael Hindgren 26 september 2018 roarna i Königsberg De sju broarna i Königsberg (nuvarande Kaliningrad) på 1700-talet: (a) Königsberg 1652 (b) Graf

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Föreläsning 9: NP-fullständighet

Föreläsning 9: NP-fullständighet Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 1 november 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Kap.6 Grafer. Egenskaper: Handskakningslemmat och Eulers formel Sats om eulerkrets/väg Isomorfi och representation av grafer Graffärgning

Kap.6 Grafer. Egenskaper: Handskakningslemmat och Eulers formel Sats om eulerkrets/väg Isomorfi och representation av grafer Graffärgning Kap.6 Grafer Allmänna begrepp: graf, delraf, multigraf, enkelgraf, riktad graf, nodsgrad vandring, väg, stig, krets, cykel sammanhängande graf, sammanhängande komponenter Speciella grafer: komplett graf,

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.

Läs mer

Efternamn förnamn pnr årskurs

Efternamn förnamn pnr årskurs KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 5A, den 15 oktber 2013, kl 09.00-10.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 08 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 augusti 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y. Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad. Matematiska institutionen Optimeringslära TENTAMEN TAOP07/TEN1 OPTIMERINGSLÄRA GRUNDKURS för Y Datum: 27 augusti 2013 Tid: 14-19 Hjälpmedel: Inga Antal uppgifter: 7 Uppgifterna är inte ordnade efter svårighetsgrad.

Läs mer

Laboration 2 - Heltalsoptimering

Laboration 2 - Heltalsoptimering Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 2 Optimeringslära 4 februari 203 Laboration 2 - Heltalsoptimering Problemställning Synande av cellprover När

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 9 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag Bevis av NP-fullständighet Labbteoriredovisning inför labb 4 2 Teori Teori När vi talar om NP-fullständighet

Läs mer

Efternamn förnamn ååmmdd kodnr

Efternamn förnamn ååmmdd kodnr KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn ååmmdd kodnr Lösning till kontrollskrivning 5A, den 15 maj 2014, kl 13.00-14.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 1 oktober 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 12 november 2015 Anton Grensjö ADK Övning 8 12 november 2015 1 / 21 Översikt Kursplanering Ö8: Mästarprov 1, oavgörbarhet

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 29 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet

z = min 3x 1 2x 2 + y Fixera y, vilket ger subproblemet Bendersdekomposition Blandade heltalsproblem med ett stort antal kontinuerliga variabler och få heltalsvariabler. Mycket lättare att lösa om heltalsvariablerna fixeras. Bendersdekomposition (primal dekomposition)

Läs mer

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg

Lösningar/svar. Uppgift 1. Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system. Optimeringslära Kaj Holmberg Tekniska Högskolan i Linköping Optimering av realistiska sammansatta system Matematiska Institutionen Lösning till tentamen Optimeringslära 2017-08-22 Kaj Holmberg Lösningar/svar Uppgift 1 1a: Variabeldefinition:

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2017 03 16 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för

Läs mer

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13

TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13 Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski

Läs mer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer

Föreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Projektinformation TAOP61 Optimering av realistiska sammansatta system Projekt 4: Lösning av snöröjningsproblemet

Projektinformation TAOP61 Optimering av realistiska sammansatta system Projekt 4: Lösning av snöröjningsproblemet Linköpings Tekniska Högskola 2016 10 27 Matematiska institutionen/optimeringslära Kaj Holmberg Projektinformation TAOP61 Optimering av realistiska sammansatta system Projekt 4: Lösning av snöröjningsproblemet

Läs mer

Föreläsning 5: Grafer Del 1

Föreläsning 5: Grafer Del 1 2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning?

Föreläsning 7+8: NP-problem. Begreppet effektiv algoritm är alltså synonymt med går i polynomisk tid i den här kursen. Är detta en rimlig uppdelning? Formalisering av rimlig tid Föreläsning 7+8: NP-problem En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1 är för långsam.

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2015 08 25 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken

Läs mer

Uppgifter 6: Grafteori

Uppgifter 6: Grafteori Grunder i matematik och logik (2017) Uppgifter 6: Grafteori Marco Kuhlmann Nivå 6.01 nge antalet noder och bågar. a) b) a) 7 noder, 10 bågar b) 9 noder, 10 bågar 6.02 nge gradtalet för varje nod. a) b)

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: oktober 08 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer

Optimering. Optimering

Optimering. Optimering TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 18 november 2015 Anton Grensjö ADK Övning 10 18 november 2015 1 / 20 Översikt Kursplanering Ö9: NP-fullständighetsbevis

Läs mer

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna

TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i

Olinjär optimering med bivillkor: KKT min f (x) då g i (x) 0 för alla i Olinjär optimering med bivillkor min då f (x) g i (x) 0 för alla i Specialfall: Konvext problem. Linjära bivillkor: Ax b. Linjära likhetsbivillkor: Ax = b. Inga bivillkor: Hanterat tidigare. Metodprinciper:

Läs mer

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS

TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar

Läs mer

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER

TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 maj 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får

Läs mer

Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?

Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering? TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov Roghayeh

Läs mer

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED

TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:

Läs mer

Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s

Optimeringslära Kaj Holmberg. Lösningar/svar. Iteration 2: x 2 s Tekniska Högskolan i Linköping Optimering av realistiska sammansatta s Matematiska Institutionen Lösning till tentamen Optimeringslära 2014-01-15 Kaj Holmberg Lösningar/svar Uppgift 1 1a: (Detta problem

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Tentamensinstruktioner. När Du löser uppgifterna

Tentamensinstruktioner. När Du löser uppgifterna Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering

Läs mer