Optimering. Optimering
|
|
- Anders Ström
- för 9 år sedan
- Visningar:
Transkript
1 TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg Kurshemsida: Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William Lövfors, Johan Vidlund Litteratur: Kaj Holmberg: Optimering (Liber, 2010) Kaj Holmberg: Grön optimering Undervisning: Föreläsningar 11 st Lektioner 10 st Laborationer 5 st Examination: Skriftlig tenta Laborationer, redovisas skriftligt Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Långsiktiga mål med kursen Optimering När inte intuitionen räcker till... Matematisk bas. Löser verkliga problem. Använder speciellt utvalda metoder. Fanns ej utan datorer. Kräver kompetens/kunskaper från flera olika områden. Två specifika svårigheter: Konstruera relevant modell. Ta med relevanta saker (t.ex. kostnader, fysik, miljö). Lösa modellen. Välja/använda lämplig metod. Båda krävs. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Optimering Känna igen optimeringsproblem. Kunna formulera problem matematiskt. Förstå principerna bakom olika metoder. Kunna välja lämplig lösningsmetod. Kunna använda tillgänglig programvara. Medverka vid utveckling av ny programvara. (Räkna för hand.) Alla talar om vädret men ingen gör något åt det. Charles Dudley Warner ( ) Nästan samma sak med optimering. Vi är omgivna av optimeringsproblem hela tiden, men få av dem löses. Man ser inte att det är ett optimeringsproblem. Man kan inte formulera det på ett lösbart sätt (dvs. matematiskt). Man kan inte lösa det (dvs. finna en lämplig lösningsmetod). Detta ska denna kurs ändra på för er. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
2 Vad är optimering? Konsten att göra på bästa möjliga sätt. (Men inte konst, utan vetenskap.) Bästa definieras av vad jag vill (minimera eller maximera). Kallas målfunktion. Exempel: Minimera kostnaden. Möjliga definieras genom att förbjuda det som är omöjligt/otillåtet. Kallas bivillkor. Målfunktion och bivillkor måste definieras exakt/matematiskt. Hur kan man misslyckas? 1 Lös problemet felaktigt, dvs. finn en lösning som inte är optimal, utan sämre och/eller otillåten. Dålig metod. 2 Lös fel problem, dvs. finn korrekt optimallösning till fel modell. Dålig modell. 3 Både 1 och 2, dvs. finn fel lösning till fel modell. Dålig modell och metod. 2 är vanligast. 3 kan vara bättre än 2. Optimering är ett bra sätt att hitta fel i en modell. Lösningen blir knäpp om man har glömt något viktigt bivillkor. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Dumma exempel Dumt formulerade optimeringsproblem kan ge knäppa optimallösningar: Minimera kostnaden för att bygga ett hus, utan att kräva att något får plats i huset. (Ger troligen mycket litet hus, till kostnaden noll.) Minimera kostnaden för reparationer (för väg, järnväg) i år, utan hänsyn till att det som inte lagas i år måste lagas i framtiden (och kanske blir dyrare). Maximera priserna på verksamhet (parkering, bussresor) utan att tänka på att kunderna kan försvinna. Minimera kostnaden för social verksamhet (vård, skola) utan bivillkor på kvaliteten på verksamheten. Minimera ansträngningen vid träning. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Optimering Optimus: Bäst (på latin). Optimeringsproblem: min f (x) då g i (x) b i för i = 1,... m x kallas variabler. f (x) kallas målfunktion. g i (x) b i kallas bivillkor. Delområden (beroende på strukturen hos problemet): Linjärprogrammering, LP (Dantzig 1949) Ickelinjärprogrammering, ILP (Kuhn & Tucker 1951) Heltalsprogrammering, HP (Gomory 1958) Dynamisk programmering, DynP (Bellman 1957) Matematisk programmering: Metoder och teori Kombinatorisk optimering: Räkna upp kombinationer Programmering: (grekiska: pro + gramma = föreskrift, planering) Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
3 Hur man använder optimering: Operationanalys Mål när man gör modellen 1 Formulering av problemet. Finns det ett problem? Vad vill man optimera? Vilka begränsningar finns? 2 Konstruktion av en matematisk modell. Definiera variabler, målfunktion samt bivillkor. Är resultatet en LP-, ILP eller HP-modell? 3 Insamling av data. 4 Lösning av det matematiska problemet. Välj lämplig optimeringsmetod. 5 Utvärdering av resultat (och modell). Är resultatet realistiskt, lämpligt, vettigt, bra? Om inte, gå till 2. 6 Använd resultatet. Få med allt relevant, dvs. som påverkar vilken lösning som är optimal. Undvik det som är irrelevant, dvs. som inte påverkar vilken lösning som är optimal. Modellen ska vara korrekt, dvs. göra det man vill att den ska göra. Modellen ska vara lösbar, dvs. gå att lösa på rimlig/tillgänglig tid. Data (koefficienter) ska kunna tas fram. De förenklingar man kan tvingas göra ska vara medvetna och genomtänkta. Undvik onödiga komplikationer, såsom olinjäriteter. Välj målfunktion. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Mål när man väljer optimeringsmetod Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Är handelsresandeproblemet svårt? Möjlig metod (?): Jämför alla rundturer. Exempel med 10 orter (noder): Lös problemet så effektivt som möjligt. Viktigt, ty verkliga problem är stora. En dålig metod kan ta lång tid. En smart implementering är ej tillräckligt. Totalt möjligheter. Matematiskt: Det finns (n 1)! olika sätt att besöka n platser. För hand: 1 sekund per tur: sekunder, dvs. ca 4 dagar. Dator: 1 ms per tur: 362 sekunder, dvs. ca 6 minuter. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
4 Men vi kanske vill lösa större problem n Turer Tid för hand Tid för dator Snabb dator min 120 ms 120 µs min 0.7 s 0.7 ms timme 5 s 5 ms timmar 40 s 40 ms dagar 6 min 0.4 s dagar 1 timme 4 s år 11 timmar 40 s år 5.5 dagar 8 min år 72 dagar 1.7 timmar år 2.7 år 24 timmar * 10 4 år 41.5 år 15 dagar * 10 7 år 1.13 * 10 4 år 11 år * 10 9 år 3.86 * 10 6 år 3860 år * år 7.71 * 10 7 år 7.71 * 10 4 år * år 1.62 * 10 9 år 1.62 * 10 6 år * år 3.56 * år 3.56 * 10 7 år Men vi kanske vill lösa större problem Det sägs att det har gått 13.7 miljarder år sedan the Big Bang. Om vi började räkna för hand då, hade vi hunnit med ett problem med 20 noder, men inte ett med 21 noder. Med en dator hade vi hunnit med ett problem med 22 noder. Med en snabbare dator hade vi hunnit med ett problem med 24 noder. Så problemen är svåra om man använder en osmart metod. Hur bra kan man göra med en smart metod? Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 De största som lösts till optimalitet År n Forskare Turer * * Dantzig, Fulkerson och Johnson 1.2 * Held och Karp 2.0 * Camerini, Fratta och Maffioli 9.3 * Grötschel 5.6 * Crowder och Padberg 2.1 * Padberg och Rinaldi 1.5 * Grötschel och Holland 1.5 * Padberg och Rinaldi 7.5 * Applegate, Bixby, Chvatal och Cook 2.5 * Applegate, Bixby, Chvatal och Cook 1.1 * Applegate, Bixby, Chvatal och Cook 1.4 * Applegate, Bixby, Chvatal och Cook 3.9 * Applegate, Bixby, Chvatal, Cook, Espinoza, 1.1 * Goycoolea och Helsgaun Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Tillämpningsområden Optimal digital kartmatchning. Optimal formering av studentgrupper. Optimal snöröjning. Optimal design av kullager. Optimal placering av UAVer som kommunikationsreläer. Optimal planering av militära attackmönster. Optimal design, styrning och kontroll av IP-nät. Optimal omruttning för symmetriska trestegs-closnätverk Optimal placering och förflyttning av tomvagnar på järnväg. Optimal packning av pappersrullar i järnvägsvagnar. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
5 Tillämpningsområden Trend Optimal stråldosering vid cancerbehandling. Optimal planering av sjuksköterskor. Optimal planering av skogsavverkning, transporter mm. Optimalt vägunderhåll. Trafikplanering (nya vägar, vägtullar). Optimerade dagbrott. Optimal design av filter. Frekvensplanering i GSM. Optimalt utnyttjande av kraftverk. Optimal ruttplanering för gas-/oljeleverantörer. Finansiell riskhantering. Miljöaspekter blir allt viktigare i optimeringsmodellerna. Lagkrav. PR-värden (certifiering etc). Samvete. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Optimalt Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Vad är optimalt? Hur används ordet optimalt i media? Oftast som ganska bra (i allmän mening, utan att specificera målfunktion). Men optimalt ( = bäst ) kräver en målfunktion. Vilken målfunktion har jag? Vilken målfunktion har SL? Maximera vinsten? Minimera kostnaderna? Maximera antal nöjda resenärer? Minimera antal missnöjda resenärer? Maximera min egen nytta? Prissättning. Upphandling. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
6 Vad är optimalt? Vad är optimalt? Trolig målfunktion: Minimera tiden för loppet. Bivillkor = regler? Lika för alla? Doping? Jag vet vad bra ljud är, baserat på bivillkor på frekvensomfång, distorsion etc, man vad är optimalt? Vilket mått ingår i målfunktionen? Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Vad är optimalt? Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Vad är optimalt? Målfunktion: Få plats med så mycket som möjligt? Bivillkor: Få plats själv? Kanske t.o.m. kunna röra sig lite? Bra räcker väl? Bra är nog bättre, för då blir lösningen inte så extrem. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
7 Vad är optimalt? Ett första exempel: Text Tidshorisont? Maximera välbefinnandet idag? Maximera välbefinnandet om tio år? Maximera livslängden? Företaget MPigg AB producerar olika sorters datormöss. Man ska nu under en period fokusera på två sorter, Optimus och Rullmus. Man har begränsat tillgång av vissa delar. Optimusen har två knappar medan Rullmusen har tre. Man kan få fram material till maximalt 30 knappar per timme. Varje Optimus har en optiskt enhet, och man kan använda högst 6 optiska enheter per timme. Att montera en Optimus kräver 6 minuter i musmaskinen, medan en Rullmus bara kräver 4 minuter. Under en timme kan maskinen användas i medel 50 minuter. Resterande tid åtgår till rengöring och service. En Optimus ger vinsten 4 kr och en Rullmus ger 3 kr. MPigg vill inte ändra produktionen alltför ofta, utan föredrar att använda samma timplanering tills yttre förutsättningar ändras. Hur många möss av varje sort skall man göra varje timme för att maximera intäkterna? (Tillverkning av optiska enheter kräver ett mycket miljöfarligt ämne, men det struntar man i.) Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Ett första exempel: Matematisk modell Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Ett första exempel: Grafisk lösning Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (knappar) x 1 6 (optik) 6x 1 + 4x 2 50 (monteringstid) x 1 0 x 2 0 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Tillåtet område Målfunktion Optimallösning: x 1 = 3, x 2 = 8, z = 36. Gör 3 st Optimus och 8 Rullmus varje timme vilket ger en vinst på 36 kr per timme. Alla knappar går åt och all monteringstid används, men det blir 3 optiska enheter över varje timme. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
8 Ett första exempel: Variation Man fattar ett principbeslut att halvera tillgången av optiska enheter av hänsyn till miljön. Bivillkor 2 blir då x 1 3. Ett första exempel: Variation Istället för att ransonera tillgången på optiska enheter införs en straffavgift på 2 kr per enhet. Ny målfunktion: max z = 2x 1 + 3x 2. Degenererad lösning. Tre bivillkor aktiva. Alla resurser tar slut. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Ett första exempel: Olinjär variation Vinsten avtar med mängden: c 1 (x 1 ) = 4 0.1x 1 och c 2 (x 2 ) = 3 0.2x 2, vilket ger målfunktionen f (x) = c 1 (x 1 )x 1 + c 2 (x 2 )x 2 = (4 0.1x 1 )x 1 + (3 0.2x 2 )x 2 = 4x 1 0.1x x 2 0.2x 2 2. Icke-unik optimallösning: x 1 = 3, x 2 = 8, z = 30 och x 1 = 0, x 2 = 10, z = 30 samt alla som ligger mellan dem. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Ett första exempel: Variation Optimus ger intäkt 5 kr per enhet. Målfunktion: max z = 5x 1 + 3x 2 Kan ej lösas grafiskt. LP-lösning: x 1 = 6, x 2 = 3.5, z LP = Icke heltalig optimallösning. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
9 Ett första exempel: Heltalsproblemet Antalet enheter måste vara heltal. Lägg till: x 1, x 2 heltal Ett första exempel: Heltalsproblemet Antal enheter måste vara heltal. Lägg till: x 1, x 2 heltal Tillåtet område: Enbart de svarta prickarna. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Ett första exempel: Heltalsproblemet Antalet enheter måste vara heltal. Lägg till: x 1, x 2 heltal Tillåtet område: Enbart de svarta prickarna. Heltalslösning: x 1 = 5, x 2 = 5, z = 40 Gör 5 enheter av båda sorterna. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Introduktion till komplexitet Teoretisk bas för frågorna: Är en viss metod bra eller dålig? Är ett visst problem lätt eller svårt? Hur många operationer krävs, som funktion av indatas storlek, i värsta fall? Vi skiljer på polynomisk komplexitet (lätt) och exponentiell (svår). Ex: 2 n blir alltid större än n 4, om n blir stort nog. Skillnaden mellan LP-lösning och heltalslösning: z z LP = 0.5. Heltalsoptimum kan inte fås genom avrundning av LP-optimum. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
10 Introduktion till komplexitet Introduktion till komplexitet Vilken tidskomplexitet har den bästa kända metoden för problemet? P är den klass av problem som kan lösas av en polynomisk algoritm. Svårare klasser: NP-fullständiga, NP-svåra Tro: Det finns ingen polynomisk algoritm för något NP-fullständigt/-svårt problem. Exempel 1: Sortera n heltal i stigande ordning: O(n log(n)). Polynomisk algoritm. Exempel 2: Genomlöpa alla hörn i en hyperkub i n dimensioner: O(2 n ). Exponentiell algoritm. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39 Heuristiker Smarta metoder som ger skapliga lösningar. Ger ej garanterat optimum. Men kan göra det om man har tur. Snabbare än optimerande metoder. Enda möjligheten för riktigt stora svåra problem. Ofta: NP-svårt problem, polynomisk heuristik. Kaj Holmberg (LiU) TAOP88 Optimering 26 augusti / 39
Optimering. TAOP88 Optimering för ingenjörer. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov Roghayeh
Optimering. TAOP86 Kombinatorisk optimering med miljötillämpningar. När inte intuitionen räcker till... Långsiktiga mål med kursen. Vad är optimering?
TAOP86 Kombinatorisk optimering med miljötillämpningar Examinator: Kaj Holmberg kaj.holmberg@liu.se http://courses.mai.liu.se/gu/taop86 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Björn Morén
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 2 oktober 2013 Tid:.00-13.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 maj 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2010 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2010 1 Kursmål & innehåll 1.1 Mål med
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2016 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 10 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER för M/EMM Datum: oktober 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Optimering. Optimering av transportproblem. Linköpings universitet SL. Campusveckan VT2013
Optimering Optimering av transportproblem Campusveckan VT2013 Linköpings universitet SL 1 Optimering - Distributionsproblem Företaget Kulprodukter AB producerar sina kulor vid fyra olika fabriksanläggningar
Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
LP-problem. Vårt första exempel. Baslösningar representerar extrempunkter. Baslösningar representerar extrempunkter
LP-problem Vårt första exempel Ett LP-problem: max z = c T x då Ax b, x 0. Den tillåtna mängden är en polyeder och konvex. Målfunktionen är linjär och konvex. Så problemet är konvext. Var ligger optimum?
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 13 januari 2018 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 19 april 2017 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 16 mars 010 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Kombinatorisk
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då n c j x j j= n a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: april 2018 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg: Optimering
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 19 mars 2011 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 april 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Föreläsning 11. Giriga algoritmer
Föreläsning 11 Giriga algoritmer Föreläsning 11 Giriga algoritmer Användning Växelproblemet Kappsäcksproblemet Schemaläggning Färgläggning Handelsresandeproblemet Uppgifter Giriga algoritmer (Greedy algorithms)
Våga Visa kultur- och musikskolor
Våga Visa kultur- och musikskolor Kundundersökning 04 Värmdö kommun Genomförd av CMA Research AB April 04 Kön Är du 37 6 34 65 39 60 3 69 0% 0% 40% 60% 0% 0% Kille Tjej Ej svar Våga Visa kultur- och musikskolor,
Optimeringslära 2013-11-01 Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 10 januari 201 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
min c 1 x 1 + c 2 x 2 då x 1 + x 2 = 1, x 1 {0, 1}, x 2 {0, 1} plus andra bivillkor. Vi måste göra k st av n alternativ:
Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j a ij x j b i x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland u j
LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer
Vårt första exempel Variabeldefinition: x 1 = antal enheter Optimus som görs varje timme. x 2 = antal enheter Rullmus som görs varje timme. Matematisk modell: max z = 4x 1 + 3x 2 då 2x 1 + 3x 2 30 (1)
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 11 januari 2017 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.
Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är
Tentamensinstruktioner
Linköpings Tekniska Högskola Institutionen för Teknik och Naturvetenskap/ITN TENTAMEN TNE 05 OPTIMERINGSLÄRA Datum: 008-05-7 Tid: 4.00-8.00 Hjälpmedel: Boken Optimeringslära av Lundgren et al. och Föreläsningsanteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
N = {i}: noder (hörn) Graf: G = (N, B) Definitioner. Väg: Sekvens av angränsande bågar. Cykel: Väg som startar och slutar i samma nod.
Polyeder 0 x, 0 x, 0 x, x + x + x, x + x + x Grafdefinitioner N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 9 april 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN OPTIMERING FÖR INGENJÖRER Datum: 0 oktober 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i
TNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
1DV433 HT13. I vilken utsträckning har kursens innehåll och uppläggning gett förutsättningar för att du ska ha uppnått respektive lärandemål?
1DV33 HT13 Antal : I vilken utsträckning har kursens innehåll och uppläggning gett förutsättningar för att du ska ha uppnått respektive lärandemål? - ha fått grundläggande kunskaper om strukturerad programmering
TNSL11 Kvantitativ Logistik
TENTAMEN TNSL11 Kvantitativ Logistik Datum: 25 mars 2013 Tid: 08:00 12:00 i TP56 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta emot
NATURVETENSKAP FÖR LIVET?
NATURVETENSKAP FÖR LIVET? Under terminen kommer din klass att medverka i ett forskningsprojekt. Ni kommer att arbeta med uppgifter som handlar om i samhället. Enkäten innehåller frågor om dig och dina
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 8 januari 201 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN 1 OPTIMERINGSLÄRA GRUNDKURS för I, Ii och TB Datum: 24 augusti 2009 Tid: 8.00-13.00 Hjälpmedel: Lundgren m fl: Optimeringslära och/eller Lundgren
Kursutvärdering. Samhällskunskap A
Samhällskunskap A Läsåret 9-1 Läsåret 9-1 8 6 4 Mycket bra Bra Dåligt Mycket dåligt EAS 1. Mitt första inryck av denna kurs var: Mycket bra 6 29 Bra 14 67 Dåligt 1 5 Mycket dåligt - - Antal EAS:. Antal
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 08 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Kortfattad sammanfattning av studenternas synpunkter och förslag
Termin: VT 2015 Program: W Kurs: Klimat 1TV026 10 hp Antal registrerade studenter: 11 Svarsfrekvens: (54%) 6/11 Datum: 2015-04-08 Utfall av examination Antal examinerade: 9 Betyg 5: 0 (0%) Betyg 4: 5 (56%)
Tentamen IE1204 Digital design
Tentamen IE1204 Digital design Underkända tentander orsak? 2014 januari, TIDAB, TKOMK och TIEDB Anders Sjögren, as@kth.se, KTH ICT, 2014-01-31 Underlaget bygger på en icke anonym enkät till de studenter
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: 1 mars 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för EMM Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Kurser inom profilen Teknisk matematik (Y)
Kurser inom profilen Teknisk matematik (Y) Kurser i Optimeringslära Obligatorisk TAOP24 Optimeringslära fortsättningskurs Y Valbara TAOP04 Matematisk optimering TAOP34 Optimering av stora system TAOP87
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: januari 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 17 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering.
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR för IT Datum: 11 mars 2013 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kaj Holmberg: Optimering.
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: januari 0 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år.
1 av 15 2010-11-03 12:46 Syftet med den här enkäten är att lära mer om hur lärare tänker och känner när det gäller matematikundervisningen, särskilt i relation till kursplanen och till de nationella proven.
Får vi vara trygga? Praktiknära forskning inom ämnet idrott och hälsa Rapport nr. 5:2009
Praktiknära forskning inom ämnet idrott och hälsa Rapport nr. 5:29 Får vi vara trygga? En undersökande studie om elevers uppfattning om kränkande handlingar under lektioner i idrott och hälsa Jonas Bergdahl
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 2 augusti 2011 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Metod- PM: Påverkan på Sveriges apotek efter privatiseringen
Metod- PM: Påverkan på Sveriges apotek efter privatiseringen Problem Sedan privatiseringen av landets apotek skedde för 3 år sedan är det många som hävdar att apoteken inte har utvecklats till det bättre,
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: 28 augusti 2015 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
NATURVETENSKAP FÖR LIVET?
NATURVETENSKAP FÖR LIVET? Under terminen kommer din klass att medverka i ett forskningsprojekt. Ni kommer att arbeta med uppgifter som handlar om naturvetenskap och teknik i samhället. Enkäten innehåller
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: 1 januari 01 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping TAOP88 Matematiska Institutionen Lösning till tentamen Optimeringslära 9--7 Kaj Holmberg Lösningar Uppgift a: Inför slackvariabler x 5, x 6 och x 7 Starta med slackvariablerna
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: januari 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken
Flöde i nätverk. Flöde i nätverk. Specialfall av minkostnadsflödesproblemet
Flöde i nätverk Graf: G = (N, B) Variabeldefinition: x ij = flöde i båge (i, j). Bågdata för båge (i, j): c ij : flödeskostnad per enhet. u ij : övre gräns för flödet. l ij : undre gräns för flödet. Bivillkor:
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Grunderna i stegkodsprogrammering
Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP8/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 9 augusti 01 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP86/TEN KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: 24 oktober 204 Tid: 8.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: juni 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Sfi-bas överenskommelse och betalningsmodell för sfi-bas och sfx
Dnr 333-1305/2014 Sida 1 (5) 2014-11-03 Sfi-bas överenskommelse och betalningsmodell för sfi-bas och sfx Svar på remiss från Kommunförbundet Stockholms län Bakgrund Svenska för invandrare - bas (sfi-bas)
Kartering av råvattensystem
Kartering av råvattensystem Förord Det här examensarbetet(7,5 hp) är det avslutande momentet i Högskoleprogrammet till processoperatör(120hp). Examensarbetet har genomförts vid och i samarbete med Domsjö
Optimeringslära Kaj Holmberg
Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 26-6- Kaj Holmberg Lösningar Uppgift Hinkpackning (hink = tur med cykeln. Jag använder
Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin
Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering
Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER för M/EMM Datum: 0 augusti 201 Tid: 8.00-1.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering
Industriutbildningar. Hösten 2014
Industriutbildningar Hösten 2014 Högskoleutbildningar via IDC Industriutbildningar är framtagna för, och anpassade till, företagens medarbetare genom ett samarabete mellan IDC West Sweden och Högskolan
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN 1 OPTIMERING FÖR INGENJÖRER Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 18 januari 2019 Tid: 8.00-13.00 Hjälpmedel: Miniräknare Kurslitteraturen: Kaj Holmberg:
Uppgifter talmönster & följder
Uppgifter talmönster & följder Innan undervisningen om talmönster börjar bör du (åter)bekanta dig med uppgifter med anknytning till talmönster som elever möter i dagens skola. Uppgifterna är hämtade från
TAOP86/TEN 1 KOMBINATORISK OPTIMERING MED
Matematiska institutionen Optimeringslära TENTAMEN TAOP6/TEN 1 KOMBINATORISK OPTIMERING MED MILJÖTILLÄMPNINGAR Datum: januari 2016 Tid: 1.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
TNSL05 Optimering, Modellering och Planering. Föreläsning 2: Forts. introduktion till matematisk modellering
TNSL05 Optimering, Modellering och Planering Föreläsning 2: Forts. introduktion till matematisk modellering 2017-11-01 2 Dagordning Matematisk modellering, Linjära Problem (LP) Terminologi Målfunktion
ANONYMA TENTAMINA (FÖRDELAR) ÅSIKTSTORG:
ANONYMA TENTAMINA (FÖRDELAR) ÅSIKTSTORG: SVAR: 1. En bra lärare kan inte favorisera 2. Kan vara bra för att förminska diskriminering 3. Att man inte kan bli orättvist bedömd 4. Alla blir lika behandlade
Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering
Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar
UTVÄRDERING. Sammanställning av utvärderingsresultat. Historia 2 2014/2015 S2ab. Utvärdering Hi2 2014/15" 1
UTVÄRDERING Sammanställning av utvärderingsresultat Historia 2 2014/2015 S2ab Utvärdering Hi2 2014/15" 1 Inledning Kursen Historia 2 utvärderades i maj 2015 digitalt. 14 av 22 elever har fyllt i enkäten
Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition
Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills
HF0010. Introduktionskurs i datateknik 1,5 hp
HF0010 Introduktionskurs i datateknik 1,5 hp Välkommna - till KTH, Haninge, Datateknik, kursen och till första steget mot att bli programmerare! Er lärare och kursansvarig: Nicklas Brandefelt, bfelt@kth.se
TAOP88/TEN 1 OPTIMERING FÖR INGENJÖRER
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN OPTIMERING FÖR INGENJÖRER Datum: 2 maj 20 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar i boken får
Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition
Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, j)}, i N, j N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg
Katalog över individuella val Läsåret 07/08 Till dig som går NV 2 och skall välja till åk 3
Katalog över individuella val Läsåret 07/08 Till dig som går NV 2 och skall välja till åk 3 Du ska totalt ha 300 poäng individuellt val. Till år 2 väljer du 100 poäng och under år 3 läser du de återstående
THFR41 - Teknisk kommunikation på franska II - del 1
1 (6) THFR41 - Teknisk kommunikation på franska II - del 1 Sändlista Svante Gunnarsson Torun Berlind Elin Önstorp Matilda Leinsköld Miguel Gimenez Rodriguez Johan Holtström Kurskod THFR41 Examinator Miguel
Föreläsning 4: Giriga algoritmer. Giriga algoritmer
Föreläsning 4: Giriga algoritmer Giriga algoritmer Denna typ av algoritmer arbetar efter följande princip: Gör i varje situation det som är lokalt optimalt, d.v.s. bäst för stunden. Några exempel vi redan
WEBB12: Animering och multimedia för webben 7,5 hp H13 (31WAN1)
Kursrapport Animering och multimedia för webben WEBB12: Animering och multimedia för webben 7,5 hp H13 (31WAN1) Kursansvarig Daniel Birgersson och Jan Buse Medverkande Daniel Birgersson, Stefan Nilsson,
Föreläsning 8: Intro till Komplexitetsteori
Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1
13. Vad tycker du om samarbete och enskilt arbete på kurserna när det gäller laborationer?
Enkäten Bakgrund 1. Vilket kön har du? Man Kvinna 2. Hur gammal är du? -25 26-30 31-35 36-3. Vilket program läste/läser du? Inom parenteserna står de olika namn utbildningarna haft genom åren. C (Datavetenskaplig
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Problemlösning i undervisning Vad menas med rika problem? Heuristisk metod: geometriskt ort Problemlösning The question, what is problem solving,
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS för D och C. Tentamensinstruktioner. När Du löser uppgifterna
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS för D och C Datum: juni 0 Tid:.00-9.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering. Kaj
TAOP33/TEN 2 KOMBINATORISK OPTIMERING GRUNDKURS
Matematiska institutionen Optimeringslära TENTAMEN TAOP/TEN KOMBINATORISK OPTIMERING GRUNDKURS Datum: augusti 0 Tid:.00-.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg: Optimering Anteckningar
Informationsträff 4 nov 2015
Informationsträff 4 nov 2015 UOO36P VFU 3 Förskolan 7,5hp Period vecka 47-51 Vem är jag och vem är du? Examinator: Anna Öqvist Kursledare: Monica Grape Övriga involverade lärare: Kattis Edström. Ull-Britt