Matematik 92MA41 (15hp) Vladimir Tkatjev

Storlek: px
Starta visningen från sidan:

Download "Matematik 92MA41 (15hp) Vladimir Tkatjev"

Transkript

1 Matematik 92MA41 (15hp) Vladimir Tkatjev

2 Dagens program Problemlösning i undervisning Vad menas med rika problem? Heuristisk metod: geometriskt ort

3 Problemlösning The question, what is problem solving, cannot have an unanimous answer; it depends too much on personal interests and philosophy. (Mamona-Downs & Downs, 2005) Det ofta använda uttrycket att hitta en lösning antyder att någonstans bakom problemformuleringen finns det en lösningsmetod klar som det gäller att upptäcka, att hitta, vilket innebär att den egentligen redan fanns där. Detta är enligt min mening en missvisande metafor som döljer problemlösningens kreativa, skapande dimension. (Bergsten, 2006).

4 Problemlösning i undervisningen Lärarcentrerad klassundervisning med en inledande genomgång åtföljd av eget arbete egentligen är den vanligaste pedagogiska modellen i svenska grundskolor. Wyndhamn, Riesbeck och Schoultz (2000) Undervisningen i Sverige ofta har en procedurell inriktning, vilket bland annat visar sig i att elevernas beräkningsprocedurer är väl inövade men att eleverna har bristfällig förståelse för olika beräkningsstrategier. [ ] Om undervisningen i stället är konceptuellt inriktad med fokus på förståelse av begrepp och procedurer, har eleverna större möjligheter att överföra sina matematiska kunskaper till nya situationer. Procedurell inlärning innebär att själva proceduren, på vilket sätt man exempelvis gör en uträkning är det primära. En konceptuell syn på inlärning innebär att eleverna arbetar mer med begrepp och förståelsen för dem i kombination med att lära samt öva på procedurerna. (PISA rapport 2009, Skolverket, 2010)

5 Problemlösning i undervisningen I kursplanen för ämnet matematik står att syftet med undervisningen i matematik är att bidra till att eleverna utvecklar kunskaper för att kunna formulera och lösa problem samt reflektera över och värdera valda strategier, metoder, modeller och resultat och att genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik. (Lgr11 s ) Lgy 2011: Matematiska förmågor och kompetenser Algoritmkompetens Begreppskompetens Resonemangskompetens Kommunikationskompetens Problemlösningskompetens Modelleringskompetens redovisa, strukturera definition, samband motivera, bevisa förklara, diskutera lösa, upptäcka bygga upp/ använda en modell

6 Problemlösning i undervisningen Lgr69 Lpo80 Lpo94, Lgr11 att undervisa för problemlösning att undervisa om problemlösning att undervisa genom problemlösning att lära sig matematik för att kunna lösa problem att välja den rätta strategin för att lösa olika slags problem problemlösning som ett medel för att skaffa ny kunskap

7 Problemlösning i undervisningen Kognitivt perspektiv vad som händer och pågår i den problemlösanade elevens huvud Problemlösning är i grunden hjärngympa (Äldre lärarstuderande Problemlösning då handlar det om att man frågar sig: Vad frågar de efter? Hur många liter rymmer den här? Hur mycket kostar den här? För att få ett svar kanske man måste göra flera uppställningar. (Lärare Åk 5) Matematik är problemlösning. Den viktigaste tankefasen är problemformuleringen. Först har jag ingen aning om hur jag ska gå tillväga, men kan jag identifiera lämpliga variabler och formulera problemet tydligt blir det sedan en förhållandevis enkel matematisk modell som ska tillämpas. (Forskare) Affektivt perspektiv vad som berör elevens hjärta (känsloliv) Samtidigt som ett problem ska kittla elevernas tänkande får det inte vara för svårt. Det ska vara roligt att lösa och lagom svårt annars ger ganska många elever upp. (Äldre lärarstuderande) Matte är ett glädjeämne för många barn, men för en del är det ju pest och pina. Det är ju antigen eller på något sätt. Det kommer alltid att finnas elever med ångest inför matten hur vi än gör. (Lärare Åk 5) Jag måste tillstå att jag känner mig mycket tillfreds när jag lyckats att lösa ett problem, när man hittat den lilla, enkla lösningen och vet att den räcker. Man känner glädje men också säkerhet. Man vet att matten fungerar väl. (Forskare)

8 Vad tycker du?... Problemlösning i undervisningen

9 Vad är ett matematiskt problem? Uppgift Rutinuppgift Standarduppgift Textuppgift Benämnd uppgift Vardagsuppgift Problem Rikt Problem Annat Problem

10 Vad är ett matematiskt problem? För att en uppgift i största allmänhet skall vara ett verkligt problem krävs att den som möter problemet ska vilja finna en lösning det inte ska finnas en färdig rutin att tillgå för problemets lösande problemet kräver ett eller fler mer eller mindre kreativa lösningsförsök J. Unenge, J. Wyndhamn, Problemlösning, Täljaren 1988

11 Vad är ett rikt matematiskt problem? Problemet ska introducera viktiga matematiska idéer eller vissa lösningsstrategier. Problemet ska vara lätt att förstå och alla ska ha en möjlighet att arbeta med det. Problemet ska upplevas som en utmaning, kräva ansträngning och tillåtas ta tid. Problemet ska kunna lösas på olika sätt, med olika strategier och representationer. Problemet ska kunna inititera en matematisk diskussion utifrån elevernas skilda lösningar, en diskussion som visar på olika strategier, representationer och matematiska idéer. Problemet ska kunna fungera som brobyggare mellan olika matematiska områden. Problemet ska kunna leda till att elever och lärare formulerar nya intressanta problem. Rika matematiska problem (2005)

12 Strategi att lösa problem

13 Aha-upplevelse! Vad är det egentligen? Han säger det så bra, men helt över mitt huvud Kul att höra, men det rör inte mig. Tror han att jag är någon slags barnunge. Totalt förvirrad. Helt ointressant, ingenting för mig. Aha-upplevelse.

14 Strategier Lester (1996): välja en eller flera operationer att arbeta med rita bilder söka mönster arbeta baklänges göra en lista skriva upp en ekvation dramatisera situationen göra en tabell eller ett diagram gissa och pröva lösa ett enklare problem använda laborativa material eller modeller (a.a.)

15 Polyas fyra faser förstå problemet göra en plan genomföra planen och se tillbaka

16 Beräkna summan Problemlösning Perspektiv 1: Arithmetik 1+2 = = = = 15...

17 Beräkna summan Perspektiv 2: Bild Summa = Area = Problemlösning =

18 Beräkna summan Problemlösning Perspektiv 3: Symmetri = 5050

19 Geogebra m.m.

20 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. 1. Var ligger skärningspunkten? 2. Behöver man dra alla tre bisektriser? Kan man börja med två istället? 3. Varför den tredje går genom skärningspunkten?...

21 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. Ett rörligt problem istället för ett fast problem: betrakta en vinkel istället för en triangel.

22 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. Ett rörligt problem istället för ett fast problem: betrakta en vinkel istället för en triangel. Situationen blir mer symmetrisk! Vad betyder att den blåa linjen är bisektrisen?... Vilka andra ekvivalenta beskrivningar kan du hitta?

23 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. Den blåa linjen ligger på samma avstånd till vinkelns sidor Nu kastar vi bort både vinkel och bisektris! Vad innebär att ligga på samma avstånd?...

24 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. Välj en punkt i planet A Var ligger alla punkter som ligger på samma avstånd från A? Och var ligger då de punkter som samtidigt ligger på vinkeln sidor?...

25 Ett geometriskt ort Visa att de tre bisektriserna till vinklarna i en godtycklig triangel skära varandra i samma punkt. Lösning: inskriv en cirkel i triangeln! A Se tillbaka: vad var avgörande för att lösa problem?

26 Uppgift till Seminarium 3 Du har två räta linjer som skär varandra och en punkt P markerad på en av dem, se figuren nedan. Visa hur du kan konstruera, genom att använda passare och linjal, en cirkel som är tangent till båda linjerna och som har punkten P som tangeringspunkt till en av dem? P

27

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Planering Del 1: Redovisning av Uppgift till seminarium 6 Undervisning genom problemlösning Del 2: Grupparbete: rika matematiska problem (förberedelse till SRE2)

Läs mer

bedömning Per Berggren och Maria Lindroth 2014-05-23

bedömning Per Berggren och Maria Lindroth 2014-05-23 Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år.

Enkäten inleds med några frågor om demografiska data. Totalt omfattar enkäten 85 frågor. 30-40 år. 41-50 år. 51-60 år. > 60 år. 6-10 år. 1 av 15 2010-11-03 12:46 Syftet med den här enkäten är att lära mer om hur lärare tänker och känner när det gäller matematikundervisningen, särskilt i relation till kursplanen och till de nationella proven.

Läs mer

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning. Andra upplagan, reviderade sidor Matte Direkt Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer Safari 1A Lärarhandledning MS Enhetsdel Sist i varje kapitel finns ett avsnitt som i första hand tar upp enheter. Här i årskurs 1 handlar

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor

SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Bilagor Gemensamma matematikprov, analysinstrument och bedömningsmatriser för kvalitetshöjningar Författare: Per Ericson, Max Ljungberg

Läs mer

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken.

1. Skriv = eller i den tomma rutan, så att det stämmer. Motivera ditt val av tecken. Modul: Taluppfattning och tals användning. Del 3: Det didaktiska kontraktet Likhetstecknet Ingrid Olsson, fd lärarutbildare Mitthögskolan Läraraktivitet. 1. Skriv = eller i den tomma rutan, så att det

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55

matematik Syfte Kurskod: GRNMAT2 Verksamhetspoäng: 600 1. KuRSplanER FöR KoMMunal VuxEnutBildninG på GRundläGGandE nivå 55 Matematik Kurskod: GRNMAT2 Verksamhetspoäng: 600 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att

Läs mer

Kompetenser och matematik

Kompetenser och matematik ola helenius Kompetenser och matematik Att försöka skapa strukturer i vad det innebär att kunna matematik är en mångårig internationell trend. Denna artikel anknyter till Vad är kunskap i matematik i förra

Läs mer

Åk: 1 Tidsperiod: höstterminen åk 1

Åk: 1 Tidsperiod: höstterminen åk 1 Ämne: Koll på läget! förr och nu Ett tematiskt arbetsområde om hur vi är mot varandra, vad vi kan hitta i vår närhet, hur vi kan finna mönster och former allt detta runt omkring oss, både nu och för länge

Läs mer

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens

Läs mer

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar

RödGrön-spelet Av: Jonas Hall. Högstadiet. Tid: 40-120 minuter beroende på variant Material: TI-82/83/84 samt tärningar Aktivitetsbeskrivning Denna aktivitet är utformat som ett spel som spelas av en grupp elever. En elev i taget agerar Gömmare och de andra är Gissare. Den som är gömmare lagrar (gömmer) tal i några av räknarens

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

Matematikundervisning och självförtroende i årskurs 9

Matematikundervisning och självförtroende i årskurs 9 KATARINA KJELLSTRÖM Matematikundervisning och självförtroende i årskurs 9 I förra numret av Nämnaren beskrev vi elevernas kunskaper i och attityder till matematik enligt nationella utvärderingen 2003.

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik

Skolverkets förslag till kursplan i matematik i grundskolan. Matematik Matematik Matematiken har en mångtusenårig historia med bidrag från många kulturer. Den har utvecklats ur människans praktiska behov och hennes naturliga nyfikenhet och lust att utforska. Matematisk verksamhet

Läs mer

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 7 Huvudräkning, multiplikation och division... 9 Huvudräkning,

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2015-01-31 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2015-01-31 Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.

MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning

Läs mer

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d)

Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr-11. 1. b) c) d) 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera

Läs mer

Catherine Bergman Maria Österlund

Catherine Bergman Maria Österlund Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv

Läs mer

8-4 Ekvationer. Namn:..

8-4 Ekvationer. Namn:.. 8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK TETIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Sammanställning av studentutvärderingen för kursen Estetiska lärprocesser 15 hp, ht 2007

Sammanställning av studentutvärderingen för kursen Estetiska lärprocesser 15 hp, ht 2007 Sammanställning av studentutvärderingen för kursen Estetiska lärprocesser 15 hp, ht 2007 135 av 167 studenter (81%) har Lärare, tidigare år, förskola 39% besvarat utvärderingen Lärare, tidigare år, grundskola

Läs mer

Att arbeta med öppna uppgifter

Att arbeta med öppna uppgifter Modul: Samband och förändring Del: 1 Öppna uppgifter Att arbeta med öppna uppgifter Ingemar Holgersson, Högskolan Kristianstad Kursplanen i matematik betonar att undervisningen ska leda till att eleverna

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar

Läs mer

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr

Läs mer

Läromedel granskning

Läromedel granskning Läromedel granskning Utvärdera och bedöma kunskap i matematik Linnéuniversitet Tina Forsberg Begreppet läromedel Begreppet läromedel har ingen centralt fastställd definition, enligt Skolverket. I skolförordningen

Läs mer

Många elever som studerar på Barn- och Fritidsprogrammet kommer så

Många elever som studerar på Barn- och Fritidsprogrammet kommer så Linda Jarlskog Ma A på förskolan Små barn behöver uppleva att de kan förankra tidiga möten med matematik i sin egen värld. Även gymnasieelever behöver uppleva att undervisningen känns relevant för dem.

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Mullsjö 2015-06-16. Elevkonstruerade matematikuppgifter, en väg till ökad matematisk begreppsförståelse? Kent Nordbakk.

Mullsjö 2015-06-16. Elevkonstruerade matematikuppgifter, en väg till ökad matematisk begreppsförståelse? Kent Nordbakk. Mullsjö 2015-06-16 Elevkonstruerade matematikuppgifter, en väg till ökad matematisk begreppsförståelse? Kent Nordbakk Östersund 2014 Handledare: Marie Jacobson Berörda punkter Egen bakgrund Uppslag till

Läs mer

Innehåll. Kopieringsunderlag Breddningsdel Formelblad

Innehåll. Kopieringsunderlag Breddningsdel Formelblad Innehåll Information till lärare inför breddningsdelen i det nationella kursprovet i Matematik kurs A våren 1999...1 Inledning...1 Tidsplan våren 1999...1 Nyheter i kursprovet för Matematik kurs A vårterminen

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Kursutvärdering Ämne: SO Lärare: Esa Seppälä/Cecilia Enoksson Läsåret 12-13 Klass: SPR2

Kursutvärdering Ämne: SO Lärare: Esa Seppälä/Cecilia Enoksson Läsåret 12-13 Klass: SPR2 8 Mycket bra Bra Dåligt Mycket dåligt EAS 1. Hur var ditt första intryck av denna kurs? Mycket bra 6 21 Bra 21 75 Dåligt - - Mycket dåligt 1 4 EAS - - Antal EAS:. Antal svarande: 28. Mv: (Skala 1) = 78,57

Läs mer

Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius

Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius Mimer Akademiens arbete med barnens matematikutveckling Ann S Pihlgren Elisabeth Wanselius Matematikdidaktik hur förbättrar vi resultaten? I olika undersökningar de senaste 25 åren visar det sig att de

Läs mer

Exempel på uppgifter från 2010 och 2011 års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från 2010 och 2011 års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 och 2011 års ämnesprov i matematik för årskurs 3 Innehåll Inledning... 3 Exempeluppgifter i årskurs 3, 2010 2011 Skriftliga räknemetoder... 5 Huvudräkning, multiplikation

Läs mer

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.

Läs mer

2014-09-26. Dagens innehåll. Syftet med materialet är att. Bedömning för lärande i matematik. Katarina Kjellström

2014-09-26. Dagens innehåll. Syftet med materialet är att. Bedömning för lärande i matematik. Katarina Kjellström Bedömning för lärande i matematik Växjö 18 september 2014 Katarina Kjellström PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet Varför ser det ut som det

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Arbetar ämneslärare språkutvecklande?

Arbetar ämneslärare språkutvecklande? Arbetar ämneslärare språkutvecklande? Camilla Borg Carenlöv 2012 Uppsats, högskolenivå, 7,5 hp Svenska språket Svenska som andraspråk 31-60 hp Handledare: Olle Hammermo Examinator:Ulrika Serrander Sammandrag

Läs mer

Av kursplanen och betygskriterierna,

Av kursplanen och betygskriterierna, KATARINA KJELLSTRÖM Muntlig kommunikation i ett nationellt prov PRIM-gruppen ansvarar för diagnosmaterial och de nationella proven i matematik för grundskolan. Här beskrivs de muntliga delproven i ämnesprovet

Läs mer

DOPmatematik. Ett dataprogram för lärare. som undervisar i matematik. (Lågstadiet) Mellanstadiet. Högstadiet. Gymnasiet. Vuxenutbildning.

DOPmatematik. Ett dataprogram för lärare. som undervisar i matematik. (Lågstadiet) Mellanstadiet. Högstadiet. Gymnasiet. Vuxenutbildning. DOPmatematik Ett dataprogram för lärare som undervisar i matematik (Lågstadiet) Mellanstadiet Högstadiet Gymnasiet Vuxenutbildning Folkhögskola m.fl. 1 Koefficienterna beräknade av DOP-programmet Graferna

Läs mer

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många.

Dubbelt En elev plockar upp en näve kuber. En annan ska ta upp dubbelt så många. Multilink-kuber Varför kuber i matematikundervisningen? Multilink-kuber eller motsvarande material kan utnyttjas till snart sagt alla områden inom matematikundervisningen, i hela grundskolan och även upp

Läs mer

Muntlig kommunikation på matematiklektioner

Muntlig kommunikation på matematiklektioner LÄRARPROGRAMMET Muntlig kommunikation på matematiklektioner Enkätundersökning med lärare som undervisar i årskurs 7-9 Margareta Olsson Examensarbete 15hp Höstterminen 2008 Handledare: Maria Bjerneby Häll

Läs mer

Dynamisk programvara, ett didaktiskt verktyg?

Dynamisk programvara, ett didaktiskt verktyg? Dynamisk programvara, ett didaktiskt verktyg? På SMDF:s årsmöte 24 jan 2003 höll Sveriges första professor i matematikdidaktik, Rudolf Strässer, ett föredrag rubricerat Learning Geometry in Secondary Schools.

Läs mer

och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod

och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod Längd, Kapitlets innehåll Kapitlet börjar med att eleverna får träna på längd i decimalform. De olika längdenheterna tränas och eleverna får själva mäta längd. Nästa avsnitt handlar om olika trianglar

Läs mer

Bedömning för lärande. Träff för pedagoger i förskoleklass Sundsvalls kommun 2013-11-21

Bedömning för lärande. Träff för pedagoger i förskoleklass Sundsvalls kommun 2013-11-21 Bedömning för lärande Träff för pedagoger i förskoleklass Sundsvalls kommun 2013-11-21 Syfte Utveckla förståelsen om vad bedömning för lärande innebär för förskoleklassens verksamhet. Dagordning 13.00

Läs mer

Beslut. efter tillsyn i den särskilda undervisningsgruppen Optimus i Vallentuna kommun. Skolinspektionen. Beslöt

Beslut. efter tillsyn i den särskilda undervisningsgruppen Optimus i Vallentuna kommun. Skolinspektionen. Beslöt Skolinspektionen Beslöt 2014-04-03 Vallentuna kommun kommun@vallentuna.se Rektorn vid den särskilda undervisningsgruppen Optimus kristiii.aabel@vallentuna.se Beslut efter tillsyn i den särskilda undervisningsgruppen

Läs mer

1En engagerad förälder är positivt. 1 Skriftliga omdömen. 2 En framåtsyftande planering

1En engagerad förälder är positivt. 1 Skriftliga omdömen. 2 En framåtsyftande planering 1En engagerad förälder är positivt. Både för barnet och skolan. 1En engagerad förälder är positivt. Både för barnet och skolan. 1En engagerad förälder är positivt. Både för barnet och skolan. Vad är en

Läs mer

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Riksfinal Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare OBS Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Fullständiga

Läs mer

Inledning...3. Kravgränser...21. Provsammanställning...22

Inledning...3. Kravgränser...21. Provsammanställning...22 Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21

Läs mer

Lgr 11 Nya kursplaner Nytt betygssystem

Lgr 11 Nya kursplaner Nytt betygssystem Lgr 11 Nya kursplaner Nytt betygssystem Nya betygsskalan A-F samt - F= ej klarat kunskapskraven för lägsta nivå E - = det finns ej underlag för en bedömning. Det livslånga lärandet. Samma förmågor hela

Läs mer

Enkät Plantskolan Hammarby IF FF vinter 2015/16. 1. Har din son deltagit som? 2. I vilken åldersgrupp har din son deltagit?

Enkät Plantskolan Hammarby IF FF vinter 2015/16. 1. Har din son deltagit som? 2. I vilken åldersgrupp har din son deltagit? Enkät Plantskolan Hammarby IF FF vinter 2015/16 1. Har din son deltagit som? 10 9 8 85.7% 7 3 2 Målvakt Utespelare Målvakt 14,3% Utespelare 85,7% 2. I vilken åldersgrupp har din son deltagit? 10 9 8 7

Läs mer

Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen

Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen Inledning Konstruktionen av de nationella ämnesproven utgår från syftet med dessa, d.v.s. att stödja en likvärdig och rättvis bedömning

Läs mer

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth

Mönster och Algebra. NTA:s första matematiktema. Per Berggren & Maria Lindroth Mönster och Algebra NTA:s första matematiktema Per Berggren & Maria Lindroth 1 Lgr11- Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att

Läs mer

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS

Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS Matematik 2 digitala övningar med TI 82 Stat, TI 84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel

Läs mer

Får vi vara trygga? Praktiknära forskning inom ämnet idrott och hälsa Rapport nr. 5:2009

Får vi vara trygga? Praktiknära forskning inom ämnet idrott och hälsa Rapport nr. 5:2009 Praktiknära forskning inom ämnet idrott och hälsa Rapport nr. 5:29 Får vi vara trygga? En undersökande studie om elevers uppfattning om kränkande handlingar under lektioner i idrott och hälsa Jonas Bergdahl

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

Om Pythagoras hade varit taxichaufför

Om Pythagoras hade varit taxichaufför 56 Om Pythagoras hade varit taichaufför i Luleå Andrejs Dunkels Högskolan i Luleå Fig 1. Om man vill ta sig från P-platsen i hörnet av Köpmangatan och Timmermansgatan till Vinbutiken (se fig 1) så går

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Verksamhetsplan för Dingtuna skola i Äventyrspedagogik

Verksamhetsplan för Dingtuna skola i Äventyrspedagogik Verksamhetsplan för Dingtuna skola i Äventyrspedagogik Innehållsförteckning En kort presentation av mig som gjort denna verksamhetsplan.. 3 Varför arbeta med äventyrspedagogik?... 3 Koppling till styrdokument

Läs mer

Vad tycker du om sfi?

Vad tycker du om sfi? Oktober 2012 Vad tycker du om sfi? Skolverket gör under hösten en stor undersökning om vad elever tycker om sin utbildning. Det är första gången undersökningen görs och resultatet kommer att användas till

Läs mer

Londonprojektet 2015

Londonprojektet 2015 Londonprojektet 2015 För första gången någonsin på Stålforsskolan har elever i år fått möjligheten att besöka London i ett slags utbytessyfte med en brittisk skola samt för att få möjligheten att utforska

Läs mer

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72

Måluppfyllelse i svenska/svenska som andraspråk vid nationella prov årskurs 3 vårterminerna 2009 och 2010 TOTALT ANTAL ELEVER 2009: 72 Sedan vårterminen 2009 görs nationella prov i svenska och matte för årskurs 3 i hela landet. Från och med höstterminen 2009 får varje elev i Valdemarsviks kommun skriftligt omdöme varje termin i de ämnen

Läs mer

Från huvudmannen till undervisningen. Henrik Dahl & Joakim Norberg, Skolinspektionen

Från huvudmannen till undervisningen. Henrik Dahl & Joakim Norberg, Skolinspektionen Från huvudmannen till undervisningen Henrik Dahl & Joakim Norberg, Skolinspektionen Vårt huvudbudskap Från huvudmannen till undervisningen Styrkan i skolans lokala styrkedja avgör om eleven får den skola

Läs mer

Kvalitetsrapport Björkhagaskolan Grundskola 2013-2014

Kvalitetsrapport Björkhagaskolan Grundskola 2013-2014 Kvalitetsrapport Björkhagaskolan Grundskola 2013-2014 1 Björkhagaskolan 2014-08-15 Systematiskt kvalitetarbete Kvalitetsrapport 2013-2014 1. GRUNDFAKTA Enhetens namn Björkhagaskolan Antal elever (15 oktober)

Läs mer

Våga Visa kultur- och musikskolor

Våga Visa kultur- och musikskolor Våga Visa kultur- och musikskolor Kundundersökning 04 Värmdö kommun Genomförd av CMA Research AB April 04 Kön Är du 37 6 34 65 39 60 3 69 0% 0% 40% 60% 0% 0% Kille Tjej Ej svar Våga Visa kultur- och musikskolor,

Läs mer

Det övergripande syftet med min avhandling var att beskriva och

Det övergripande syftet med min avhandling var att beskriva och Eva Pettersson Elever med särskilda matematiska förmågor Får nyfikna och vetgiriga barn det stöd och den stimulans som de har rätt att förvänta sig då de börjar skolan? Barn och ungdomar som har exceptionell

Läs mer

Språket skapar. Språk- och kunskapsutvecklande arbetssätt. med avstamp i kursplanerna inom kommunal vuxenutbildning på grundläggande nivå

Språket skapar. Språk- och kunskapsutvecklande arbetssätt. med avstamp i kursplanerna inom kommunal vuxenutbildning på grundläggande nivå Språket skapar Språk- och kunskapsutvecklande arbetssätt med avstamp i kursplanerna inom kommunal vuxenutbildning på grundläggande nivå Monica Lindvall Nationellt centrum för svenska som andraspråk (NC)

Läs mer

Laboration: Att inhägna ett rektangulärt område

Laboration: Att inhägna ett rektangulärt område Laboration: Att inhägna ett rektangulärt område Du har tillgång till ett hoprullat staket som är 30 m långt. Med detta vill du inhägna ett område och använda allt staket. Du vill göra inhägnaden rektangelformad.

Läs mer

Matematikböcker i Sverige och Finland

Matematikböcker i Sverige och Finland Matematikböcker i Sverige och Finland En möjlig förklaring till att finländska elever är bättre på problemlösning än svenska elever Fredrik Brännström och Christopher da Luz Reis Lärarhögskolan i Stockholm

Läs mer

Nordiska språk i svenskundervisningen

Nordiska språk i svenskundervisningen Nordiska språk i svenskundervisningen Nordiska språk i svenskundervisningen Innehåll Inledning 6 Lärarna i årskurs 4-6 i grundskolan 8 Lärarna i årskurs 7-9 i grundskolan 11 Lärarna i gymnasieskolan

Läs mer

LÄRARLYFTET - MATEMATIK, NATURVETENSKAP OCH TEKNIK HT 2010

LÄRARLYFTET - MATEMATIK, NATURVETENSKAP OCH TEKNIK HT 2010 LÄRARLYFTET - MATEMATIK, NATURVETENSKAP OCH TEKNIK HT 2010 Det finns fortfarande många poäng att söka för tidigarelärare! För att underlätta valet i lärarlyftet har vi gjort ett urval av de kurser som

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. Anvisningar

Läs mer

Likvärdig bedömning i matematik med stöd av nationella prov

Likvärdig bedömning i matematik med stöd av nationella prov 1 (50) Likvärdig bedömning i matematik med stöd av nationella prov Matematik kurs D, MA1204, 100 poäng Sammanfattning Detta material är framtaget av Timo Hellström och Peter Nyström på Institutionen för

Läs mer

Svenska elevers matematikkunskaper

Svenska elevers matematikkunskaper Svenska elevers matematikkunskaper TIMSS En jämförande djupanalys av elevers matematikkunskaper i Sverige, Hong Kong och Taiwan Per-Olof Bentley, Göteborgs universitet 1 TIMSS 2007/2003 55 % Sv 21 % HK

Läs mer

1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i.

1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i. IUP år 7 1. Eleverna hämtar på skolans hemsida formuläret som ska fyllas i. 2. Elever besvarar frågeställningar kring sin utveckling inom ämnet. Ett formulär gemensamt för alla ämnen används av eleven.

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn

Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

ELEVHJÄLP. Diskussion s. 2 Åsikter s. 3. Källkritik s. 11. Fördelar och nackdelar s. 4. Samarbete s. 10. Slutsatser s. 9. Konsekvenser s.

ELEVHJÄLP. Diskussion s. 2 Åsikter s. 3. Källkritik s. 11. Fördelar och nackdelar s. 4. Samarbete s. 10. Slutsatser s. 9. Konsekvenser s. Källkritik s. 11 Diskussion s. 2 Åsikter s. 3 Samarbete s. 10 Slutsatser s. 9 ELEVHJÄLP Fördelar och nackdelar s. 4 Konsekvenser s. 5 Lösningar s. 8 Perspektiv s. 7 Likheter och skillnader s. 6 1 Resonera/diskutera/samtala

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till!

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. En uppgift per blad och inga svar på baksidan av bladen Lycka till! Matematik 4-6 II Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 4 hp Studenter i lärarprogrammet LAG 4-6 T3 15 högskolepoäng Tentamensdatum: 15-01-15 Tid: 09.00 13.00 Hjälpmedel: Lgr 11,

Läs mer

Utvärdering av 5B1117 Matematik 3

Utvärdering av 5B1117 Matematik 3 5B1117 Matematik 3 KTH Sidan 1 av 11 Utvärdering av 5B1117 Matematik 3 Saad Hashim Me hashim@it.kth.se George Hannouch Me hannouch@it.kth.se 5B1117 Matematik 3 KTH Sidan av 11 Svar till frågorna: 1 1.

Läs mer

Högskoleverket NOG 2006-10-21

Högskoleverket NOG 2006-10-21 Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt

Läs mer

Per Berggren och Maria Lindroth 2014-11-19

Per Berggren och Maria Lindroth 2014-11-19 Varierad matematikundervisning Per Berggren och Maria Lindroth 2014-11-19 Luffarschack Med en utmaning! Sfinxen En rik laborativ matematikuppgift som tar sin början i de första skolåren och fortsätter

Läs mer

Verksamhetsrapport. Skolinspektionen

Verksamhetsrapport. Skolinspektionen Skolinspektionen Bilaga 1 Verksam hetsrapport Verksamhetsrapport efter kvalitetsgranskning av läs- och skrivundervisningen inom ämnena svenska/svenska som andraspråk i årskurserna 4-6 vid Smygeskolan i

Läs mer

Danderyds kommun. Kundundersökning 2015. Villa Solvi förskola - Föräldrar Förskola. Pilen Marknadsundersökningar Mars 2015.

Danderyds kommun. Kundundersökning 2015. Villa Solvi förskola - Föräldrar Förskola. Pilen Marknadsundersökningar Mars 2015. Danderyds kommun Villa Solvi förskola - Föräldrar Förskola 26 respondenter Kundundersökning 215 Pilen Marknadsundersökningar Mars 215 Våga Visa 215, sida 1 Om undersökningen Bakgrund Tio kommuner i Stockholms

Läs mer

ABF Stockholm. Vuxenutbildning - Våren 2010

ABF Stockholm. Vuxenutbildning - Våren 2010 Vuxenutbildning - Våren svar, % Normer och värden 1. Jag känner mig trygg i min skola/utbildning. 0 1 2,,0,, 2. Jag behandlas bra av mina studiekamrater. 1 21 1 1,,. Lärarna bemöter mig på ett positivt

Läs mer

Matematik åk 9. Lärarinstruktion Digital diagnos Matematik Åk 9

Matematik åk 9. Lärarinstruktion Digital diagnos Matematik Åk 9 träning Insikt Lärarinstruktion Digital diagnos Matematik Åk 9 1 Till läraren Diagnosen Pejlo Insikt för åk 9 är framtagen för att ge dig som lärare överblick över dina elevers kunskaper i matematik. Diagnosen

Läs mer

Kommunal - Åk 2 - Partille kommun

Kommunal - Åk 2 - Partille kommun Om undersökningen Syfte: Syftet med undersökningen var bland annat att få ett konkret underlag om hur elever och föräldrar uppfattar skolan inom ett antal utvalda områden. Resultatet av undersökningen

Läs mer

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1. Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

PISA (Programme for International

PISA (Programme for International INGMAR INGEMANSSON, ASTRID PETTERSSON & BARBRO WENNERHOLM Svenska elevers kunskaper i internationellt perspektiv Rapporten från PISA 2000 presenterades i december. Här ges några resultat därifrån. Projektet

Läs mer