Matematik Åk 9 Provet omfattar stickprov av det centrala innehållet i Lgr b) c) d)
|
|
- Julia Ek
- för 9 år sedan
- Visningar:
Transkript
1 1. b) c) d) a) Multiplikation med 100 kan förenklas med att flytta decimalerna lika många stg som antlet nollor. 00> svar 306 b) Använd kort division. Resultatet ger igen rest. Svar 108 c) Att multiplicera med ett tal mindre än 1, ger alltid ett mindre svar än den andra termen i additionen.. = 0,012 Svar 0,012 d) Alternativ 1. Att dividera med ett tal mindre än 1 ger alltid ett större svar än täljarens värde. 0,2 =.Division med ett bråk innebär att du kan multiplicera med inversen av. Alternativ 2. Förläng täljare och nämnare med 10. Då får du divisionen = Räkna ut kastrullens volym. Sätt 3. Svara i liter. 3,14 = 3140cm 2 = 3,14 dm 2 = 3,14 liter 3. Linjerna visar färdkostnaden för två olika taxibolag TA och XI. a) Hur stor är prisskillnaden mellan TA och XI om man åker 3 km? Titta på x-axeln vid 3 km och gå uppåt tills du möter respektive linje. Läs av, 30 kr 25 kr = 5 Kr b) Vilken är kostnaden per kilometer för bolaget TA? Linjen är en proportionalitet och därför kan vi gå in och läsa av vid varje km och få rätt svar, eller = 10 kr/km c) Skriv kostnaden K som en funktion av körsträckan x i kilometer för bolag TA
2 Linjen är en proportionalitet och då finns inget m-värde. K-värdet, lutningen är då kostnaden per km ds 10 kr/km. y = 10x d) Skriv kostnaden K som en funktion av körsträckan x i kilometer för bolag XI Jag använder linjens ekvation även här, y = kx +m. m-värdet är det värde somlinjen skär y-axeln på, 20. K-värdet är kostnaden per km efter att jag subtraherat 20 kr. 1 km kostar 25 kr. k- värdet är då = 5. Det ger funktionen y= 5x Beräkna: a) Det finns flera olika sätt att lösa uppgiften på. Här ger jag ett förslag. 1% = Svar 440 kg b) Svar 300 liter 5. Förenkla uttrycken och lös sedan ekvationerna a) b) = 13 Svar x = 13
3 6. Bestäm vinkeln x i figuren. Redovisa dina beräkningar Vinkelsumman i en triangel är alltid. En rät vinkel är =. Då är vinkeln utan benämning i triangeln = = Vinkelsumman i triangeln kan då skrivas: Vinkelsumma = Detta blir en ekvation där x= ( = 40 X = 7. Joels bil är av årsmodell Gulbhars bil är 50% äldre än Joels bil. Emil har en svart bil. Den är hälften så gammal som Gulbhars bil. a) Hur många år är Gulbhars bil? Använd förändringsfaktor i dina beräkningar om du kan. b) Min (Helenas) bil är nyare än Joels bil, men äldre än Emils bil. Resonera dig fram till hur många år min bil kan vara och vilka årsmodeller det kan vara. Motivera dina svar! Resonemang: Större än 7,5 år och mindre än 10 år kan matematiskt skrivas Detta innebär att årsmodellerna som var för 10 år sedan och 7-8 år sedan är svaret på vilken årsmodell det kan vara. För 10 år sedan var det år 2005 och för 7-8 år sedan var det Årsmodell 220 Svar: och Årsmodell 2005 till 2007/2008
4 8. I en klass undersökte man hur många syskon eleverna hade. Resultatet av undersökningen ser du i diagrammet. Bestäm medelvärde och median för antal syskon. Medelärde = = 9. Helena har 0,9 liter 10% saltlösning. Joel har en stor dunk med 5 liter 2% koksaltlösning. Helena vill låna saltlösning av Joel så att hon kan späda sin till 5%. Räcker Joels lösning för att späda Helenas lösning till 2%? Visa noga hur du gör. Utgå från att 1ml väger 1g. Uppgiften löser du enklast med att först göra en tabell och sedan en ekvation: Beräkning av antal gram salt i Helenas ursprungliga lösning Beräkning av mängd saltlösning som behövs av Joels lösning Beräkning av antal gram i den slutliga 5% lösningen Joels lösning räcker eftersom det går åt 1500 ml och det fanns 5 liter ( = 5000ml)
5
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
8-4 Ekvationer. Namn:..
8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)
Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11) ( www.skolverket.se) Kunskapskraven i matematik kan delas in i följande områden: problemlösning, begrepp, metod, kommunikation och resonemang.
Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK
Hanne Solem Görel Hydén Sätt in stöten! MATEMATIK Multiplika tion Multiplikation, 5-tabellen Att multiplicera är detsamma som att addera samma tal flera gånger. Det kallar vi upprepad addition. 3 5 kan
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN. Bilagor
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Bilagor Gemensamma matematikprov, analysinstrument och bedömningsmatriser för kvalitetshöjningar Författare: Per Ericson, Max Ljungberg
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
1. 4 + 6 3 = Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0)
1. 4 + 6 3 = Svar: (1/0) 2. Vad är hälften av 1 1 2? Svar: (1/0) 3. Skriv ett heltal i rutan så att bråket får ett värde mellan 2 och 3. Svar: (1/0) 8 4. Andreas har 4 km till skolan. Hur många minuter
NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 010. NATIONELLT KURSPROV I
Lathund algebra och funktioner åk 9
Lathund algebra och funktioner åk 9 För att bli en rackare på att lösa ekvationer är det viktigt att man kan sina förutsättningar, dvs vilka matematiska regler som gäller. Prioriteringsreglerna (vilken
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Komvux/gymnasieprogram:
Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del
Veckomatte åk 5 med 10 moment
Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
4. Gör lämpliga avläsningar i diagrammet och bestäm linjens ekvation.
Repetitionsuppgifter inför prov 2 Ma2 NASA15 vt16 E-uppgifter 1. Beräkna sträckan i triangeln nedan. 3,8 m 37 o 2. En seglare ser en fyr på ett berg. Hon mäter höjdvinkeln till fyrljuset till 7,3 o. På
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996. Tidsbunden del
NATIONELLT PROV I MATEMATIK KURS A VÅREN 1996 Tidsbunden del Anvisningar Provperiod 10 maj - 1 juni 1996. Provtid Hjälpmedel Provmaterialet 120 minuter utan rast. Miniräknare och formelsamling. Formelblad
9-1 Koordinatsystem och funktioner. Namn:
9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner
Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet
AB Höst LP 1-2 Flik 02 Förtest (8768) Lev 1.qxd 2004-01-20 18:10 Sida 1 Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå
LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120
acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
(1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror.
1. En skolklass har gjort en tidning. Hur många sidor har tidningen? (1) För att numrera alla sidor i tidningen, löpande från och med 1, krävs 119 siffror. (2) Tryckkostnaden är 25 öre per sida och klassen
Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.
Block 4 2007-03-31 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGd Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss
L ÄR ARHANDLEDNING. Gunilla Viklund Birgit Gustafsson Anna Norberg
L ÄR ARHANDLEDNING Gunilla Viklund Birgit Gustafsson Anna Norberg Negativa tal Utför beräkningarna. Addera svaren i varje grupp till en kontrollsumma. Alla kontrollsummor ska bli lika. 2 5 13 + ( 2) 11
Matematik. Delprov B. Vårterminen 2009 ÄMNESPROV. Del B1 ÅRSKURS. Elevens namn
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =
Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion
Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna
Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6
Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva
Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer
1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000
Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift
8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Catherine Bergman Maria Österlund
Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv
lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4
LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Inledning...3. Kravgränser...21. Provsammanställning...22
Innehåll Inledning...3 Bedömningsanvisningar...3 Allmänna bedömningsanvisningar...3 Bedömningsanvisningar Del I...4 Bedömningsanvisningar Del II...5 Bedömningsanvisningar uppgift 11 (Max 5/6)...12 Kravgränser...21
Kapitel 4 Inför Nationella Prov
Kapitel 4 Inför Nationella Prov Sidan 3 Tretusen fyrahundra fyra 2 a 9 0 b Minsta fyrsiffriga tal är 09 (0029 = 29 är tvåsiffrigt.) 3 a 3 43 b 5 042 c 890 4 a 9 08 b 0 09 c 2 500 000 d 2 050 000 5 a 900
Facit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom
Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
INDUKTION OCH DEDUKTION
Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk
4. Inför Nationella Prov
4. Inför Nationella Prov I detta kapitel kan eleverna testa sina kunskaper, område för område, i uppgifter liknande dem som finns i nationella prov. Dessa diagnosuppgifter följs upp med uppgifter där eleverna
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
Högskoleverket NOG 2006-10-21
Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt
Lösningsförslag Cadet 2014
Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag
MATEMATIK FÖR KURS B (B-boken version 2)
NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (B-boken version 2) Provets omfattning: t o m kapitel 4.1 i Matematik 2000 kurs B (version 2). PROVET BESTÅR AV TVÅ DELAR Del 1 testar huvudsakligen
PRIMA MATEMATIK EXTRABOK 3 FACIT
PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,
Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014
Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter
Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs
Ämnesprov, läsår 2013/2014 Matematik Bedömningsanvisningar Delprov B, C, D, E Årskurs 6 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta
Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal
1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.
8-2 Förenkling av uttryck. Namn: eller Konsten att räkna algebra och göra livet lite enklare för sig. Inledning I föregående kapitel lärde du dig vad ett matematiskt uttryck är för någonting och hur man
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Komvux/gymnasieprogram:
Namn: Skola: Komvux/gymnasieprogram: Anvisningar: Tidsbunden del består av två delar, Del I och Del II. Den sammanlagda provtiden är 120 minuter varav högst 30 minuter för Del I. Till uppgifterna i Del
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-12-17 Skrivtid 0900 1400 Tentamen i: Statistik 1, 7.5 hp Antal uppgifter: 5 Krav för G: 11 Lärare: Robert Lundqvist, tel
PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov
PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ
Prov kapitel 3-5 - FACIT Version 1
Prov kapitel 3-5 - FACIT Version 1 1. Lös ekvationerna algebraiskt a. 13 x + 17 = 7x + 134 Svar: x = 117 / 6 = 19.5 b. x 10 = 84 Svar: x = 84 0.1 = 1.5575 2. Beräkna a. 17 % av 3500 = 595 b. 3 promille
en femma eller en sexa?
REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
Räkneflyt. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10
Räkneflyt Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 6 Förståelse
Fria matteboken: Matematik 2b och 2c
Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons
FÖRBEREDANDE KURS I MATEMATIK 1
FÖRBEREDANDE KURS I MATEMATIK 1 Till detta kursmaterial finns prov och lärare på Internet Ger studiepoäng Kostnadsfritt Fortlöpande anmälan på wwwmathse Eftertryck förbjudet utan tillåtelse 2007 MATHSE
Antal svarande i kommunen 32 Andel svarande i kommunen, procent 43 Kategorier ångest? Mycket dåligt Totalt Nej. Någorlunda. Mycket gott.
Resultat för särskilt boende 203, per kön, åldersgrupp, hälsotillstånd, 863 Hällefors F Hur bedömer du ditt allmänna hälsotillstånd? F2 Har du besvär av ängslan, oro eller ångest? gott gott Någorlunda
Samhällskunskap Civics
1 Ämnesprov, läsår 2012/2013 Ersättningsprov Samhällskunskap Civics Delprov A2 Årskurs 6 Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen.
Barns och ungdomars informationskanaler kring hälsofrågor
2013-02-06 Barns och ungdomars informationskanaler kring hälsofrågor Önskas mer information om hur Landstinget Kronoberg arbetar med kontaktklasser eller om innehållet i denna rapport, kontakta: Susann
http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts.
Dokumentet är från sajtsidan Matematik: som ingår i min sajt: http://www.leidenhed.se/matte.html http://www.leidenhed.se Minst och störst Senaste revideringen av kapitlet gjordes 2014-05-08, efter att
Matematik B (MA1202)
Matematik B (MA10) 50 p Betygskriterier med exempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och tillvägagångssätt
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del III. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del III 1c Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
Begrepp Uttryck, värdet av ett uttryck, samband, formel, graf, funktion, lista, diagram, storhet, enhet, tabell.
Aktivitetsbeskrivning Denna aktivitet samlar ett antal olika sätt att hantera rymdgeometriska beräkningar med formler på en grafräknare. Dessa metoder finns som uppgifter eller som en samling tips i en
ARBETSBLAD FACIT. 1 Skriv med siffror Träna huvudräkning. 10 Multiplikation med uppställning De fyra räknesätten 1.
FACIT Skriv med siffror 0 0 0 0 0 8 0 8 0 0 0 008 0 00 8 0 00 0 000 00 000 08 000 00 00 8 0 000 0 000 000 0 00 000 00 8 Addition med uppställning 08 88 8 8 0 0 80 0 8 88 0 0 0 Subtraktion med uppställning
Undersökning om pensioner och traditionell pensionsförsäkring. Kontakt AMF: Ulrika Sundbom Kontakt Novus: Anna Ragnarsson Datum: 160616
Undersökning om pensioner och traditionell pensionsförsäkring Kontakt AMF: Ulrika Sundbom Kontakt Novus: Anna Ragnarsson Datum: 160616 1 Bakgrund & Genomförande BAKGRUND Undersökningen har genomförts av
Hemtjänsten 2012 2012-08-13. Svarsfrekvens 77 av 130 utdelade = 60 %
Hemtjänsten 2012 2012-08-13 Svarsfrekvens 77 av 130 utdelade = 60 % Bortfall: 3 av 77 Jag som har hemtjänst är: Bortfall: 1 av 77 Ålder Bortfall: 1 av 77 Jag som svarat på enkäten är: 1. Hur nöjd är du
205. Begrepp och metoder. Jacob Sjöström jacobsjostrom@gmail.com
205. Begrepp och metoder Bo Sjöström bo.sjostrom@mah.se Jacob Sjöström jacobsjostrom@gmail.com Hur hög är en stapel med en miljon A4-papper? 100 st 80 grams har höjden 1 cm 1000 1 dm 1 000 000 1000 dm
k9innehåll: Matte KONVENT Ma te ma tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se
Matte KONVENT Plugga tillsammans inför de nationella proven i matematik Ma te ma å tik Länktips: Mattecentrum.se Formelsamlingen.se Matteboken.se Pluggakuten.se k9innehåll: Pluggtips Formelsamling Nationella
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Skall jag stanna eller ska jag gå? D
Skall jag stanna eller ska jag gå? D et är först när vi går ihop och vi blir många och starka som vi kan förändra våra villkor på arbetsplatsen. I över 100 år har facket vart med och påverkat arbetarnas
7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.
Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex
MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR
MATEMATIKPROV, KORT LÄROKURS 3.9.05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2002. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av juni månad 2002. Anvisningar
STARTAKTIVITET 2. Bråkens storlek
STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Engelska skolan, Järfälla
Elever År - Våren svar, % Kunskaper och bedömning. Jag vet vad jag ska kunna för att nå målen i de olika ämnena. 0 0 Medelvärde,,,,. Jag tycker att lärarna förklarar så att jag förstår. 0 0,0,,,. Lärarna
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 2001. Del II
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid
Extrablad 1. Vägen till 21. Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation.
Extrablad 1 Vägen till 21 Uppgiften består av två delar. Du ska först finna vägen till 21 och därefter utföra en räkneoperation. A I rutnätet finns alla tal från 1 till 21 inskrivna. Alla tal utom 1, 2
Aritmetik. Base camp 1. Uppgifter
Aritmetik Base camp, a) 9 c), d) 0 e) 00 f) g) h) a), >,0 > 9,, kr/kg, 9,0 kr a) 000 0, 0 Hundratalet ska ändras. Det ska vara 00 i stället för 00.,, 00 Kontoutdraget visade 00 kr fel. 0 a) 0 c) + 9 d)
MA 1202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs.
MA 202 Matematik B Mål som deltagarna skall ha uppnått efter avslutad kurs. Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för tillämpningar och vald studieinriktning
Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 3
Kapitel 3.1 3101 Exempel som löses i boken. 3102, 3103, 3104 Se facit, kontakta din lärare om du behöver hjälp. 3105 a) Se facit. b) Lägg ihop höjden på alla staplar 15 + 10 + 25 = 50 st c) Se facit. 3106
sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500
Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal
1Mer om tal. Mål. Grundkursen K 1
Mer om tal Mål När eleverna har studerat det här kapitlet ska de: förstå vad som menas med kvadratrot och kunna räkna ut kvadratro ten av ett tal kunna skriva, använda och räkna med tal i tiopotensform
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Fråga 1: Övergångsställen
Fråga 1: Övergångsställen Järbovägen/Kungsforsvägen som går rakt genom byn trafikeras dagligen av tung trafik. Många gång- och cykeltrafikanter behöver ta sig över vägen under en dag. Hur många övergångställen
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
Diagnostiskt test 1 tid: 2 timmar
Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer