Datastrukturer. föreläsning 9. Maps 1
|
|
- Ann-Marie Lindström
- för 9 år sedan
- Visningar:
Transkript
1 Datastrukturer föreläsning 9 Maps 1
2 Minsta uppspännande träd Maps 2
3 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande träd som har minst totalvikt (summera bågarnas vikter) Tillämpningar Kommunikationsnätverk Transportnätverk DEN 4 DFW ORD 6 STL ATL PIT DCA 2 7 Maps 3
4 Kruskals algoritm för MST De snåla kommunalpolitikernas algoritm för att asfaltera vägar i kommunen! 1 ORD 10 PIT DEN STL 3 7 DCA DFW ATL Maps 4
5 Kruskals algoritm för MST De snåla kommunalpolitikernas algoritm för att asfaltera vägar i kommunen! 1. Asfaltera den kortaste vägen i kommunen 2. Asfaltera den näst kortaste vägen i kommunen, osv 3. Asfaltera dock aldrig någon väg mellan två noder som redan är förbundna med asfalterade vägar DEN 4 DFW ORD STL 10 ATL PIT Maps DCA 2 7
6 Prims algoritm för MST Kommunalpampens algoritm för att asfaltera vägar i kommunen DEN ORD 6 STL PIT DCA 2 7 DFW ATL Maps 6
7 Prims algoritm för MST Kommunalpampens algoritm för att asfaltera vägar i kommunen 1. Välj en startnod (kommunalpampens hus) t ex DCA 2. Asfaltera kortaste vägen från DCA. Den går till ATL. 3. Utvidga sedan successivt det sammanbundna asfaltsvägnätet med så korta vägar som möjligt som ger en förbindelse till en ny nod. DEN 4 DFW ORD 6 STL ATL PIT DCA 2 7 Maps 7
8 Prims algoritm för MST Kommunalpampens algoritm för att asfaltera vägar i kommunen 1. Kommunalpampen bor i DCA 2. Asfaltera DCA - ATL (kortaste vägen från DCA) 3. Asfaltera DCA STL (kortaste vägen till ny nod från DCA eller ATL) 4. Asfaltera STL ORD (kortaste vägen till ny nod från DCA, ATL eller STL). Etc. DEN 4 DFW ORD STL 10 ATL PIT Maps DCA 2 7
9 Prims algoritm Algoritmen liknar Dijkstras algoritm. Även här har vi en prioritetskö Q med obesökta noder. För varje nod u lagrar vi en båge e = E[u] med vikt w = D[u]. Vikten används som nodens prioritet. Vi bygger dessutom upp ett träd T med besökta noder och bågar som spänner upp dem. När algoritmen terminerar innehåller T ett minsta uppspännande träd. Maps 9
10 Prims algoritm Algorithm Prim(G,s) D[s] 0, D[u] infinity for all nodes u different from s. E[u] null for all nodes u T new free tree, initially empty Q new priority queue with triples (D[u],(u,E[u])), where weights D[u] are priorities. while Q.isEmpty() (u,e) Q.removeMin() ( visit u along e) add node u and (non-null) edge e to T for each node z adjacent to u such that z is in Q do if weight(u,z) < D[z] then D[z] weight(u,z) and E[z] the edge from u to z update the priority of z in Q return D[u] for each node u Maps 10
11 Summering, grafalgoritmer Djupet först och bredden först sökning: O(n+m) med grannlista Hitta ev. cykler, uppspännande träd, en väg mellan två givna noder. Upprepad DFS eller BFS på alla noder i grafen ger transitiva höljet O(n(n+m)) Bredden först sökning hittar dessutom kortaste vägen till en viss nod Maps 11
12 Summering: grafalgoritmer Floyd-Warshall: O(n 3 ) om areadjacent är O(1) Beräknar transitiva höljet av en riktad graf Topologisk sortering: riktade acykliska grafer O(n+m) med grannlista Sortera grafen. Exempel: graf med förkunskaper för kurser, i vilken ordning kan vi läsa kurserna? Maps 12
13 Summering: grafalgoritmer Dijkstras algoritm: viktad graf O((m+n) log n) med heap och grafen implementerad med grannlistor. O(m+n 2 ) med osorterad prioritetskö och grafen implementerad med grannlistor. Bättre för täta grafer med många bågar, varför? Hittar kortaste avståndet/vikten mellan två noder. Ett slags BFS-sökning för viktade grafer Maps 13
14 Summering: grafalgoritmer Kruskals och Prims algoritmer: O((m+n)log n) med heap och grannlistor (även här kan man använda osorterad prioritetskö, se diskussion om Dijkstra) Minsta uppspännande träd. Prims och Kruskals algoritmer liknar Dijkstras, men prioritetsköerna innehåller bågvikter i stället för längden på kortaste vägen till startnoden. Kruskal, Prim och Dijkstra är alla exempel på giriga ( greedy ) algoritmer. Se algoritmkursen om allmänna tekniker, t ex även söndra och härska ( divide and conquer ), m fl. Maps 14
15 Binära sökträd < 6 2 > = Maps 15
16 Varför binära sökträd? Binärsökning i sorterat fält: - snabb uppslagning (O(log n)) men - långsam insättning och borttagning (O(n)) Binärt sökträd: - snabb uppslagning, insättning och borttagning om trädet är balanserat (O(log n)) Maps 16
17 Vad är ett binärt sökträd? Definition Binära träd som lagrar nycklar (och evt element) och har sökträdsegenskapen: Låt v vara trädets rot och u och w vara vänster resp höger barn. Då gäller key(u) < key(v) < key(w) Vänster och höger delträd är också binära sökträd. Alltså gäller att alla nycklar i vänster delträd är mindre än rotens nyckel, och alla i höger delträd är större än rotens nyckel. (Vi förutsätter här att vi lagrar avbildningar, dvs inga dublettnycklar.) Maps 17
18 Sökning Algorithm findelement(k, o) if o = null return NO_SUCH_KEY if k = key(o) return element(o) else if k < key(o) return findelement(k, o.left) else if k > key(o) return findelement(k, o.right) Maps 18
19 findelem i Haskell BinTree a = Empty Node a (BinTree a) (BinTree a) findelem :: Ord k => k -> BinTree (k,v) -> Maybe v findelem k Empty = Nothing findelem k (Node (k,v) left right) k == k = Just v k < k = findelem k left k > k = findelem k right Maps 19
20 Insättning Operationen insertitem(k,v) sätter in ett nytt par (k,v) på rätt plats Exempel: sätt in ett nytt par med nyckel < > > Maps 20
21 Borttagning: fall 0 och 1 barn Operationen removeelement(k) söker efter nyckeln k och om den finner den tar bort motsvarande nod v Fall 0: om v saknar barn är vi klara. Fall 1: om v har precis ett barn flyttar vi upp delträdet, se fig: ta bort nyckeln > < v Maps 21
22 Borttagning: fall 2 barn 1 Om noden v som ska tas bort har två barn: Leta upp noden w som kommer efter v i inordning (dvs har närmast större nyckel i sökträdet). w måste vara ett löv. (Det går förstås också bra med närmast mindre nyckel.) Ersätt v med w! Exempel: ta bort 3! w 5 v w Maps 22
23 Tidskomplexitet värsta fallet Antag att det binära sökträdet har n noder och höjden h Utrymmet är O(n) findelement, insertitem och removeelement är O(h) Höjden h är O(n) i värsta fall O(log n) i bästa fall bästa fallet Maps 23
24 AVL-träd Maps 24
25 AVL-träd AVL-träd är balanserade BST: för alla noder gäller det att höjdskillnaden mellan vänster och höger delträd 0 är högst 1 Sökning fungerar som i vanliga binära sökträd. Insättning och borttagning fungerar också som vanligt, men obalans kan uppstå, så vi måste eventuellt balansera om trädet. 1 2 Maps
26 Insättning i AVL-träd obalans Sätt först in det nya elementet på samma sätt som i ett vanligt BST! Det nya trädet kan bli obalanserat Balansera om trädet! Exempel: vi har satt in en ny nod med nyckel 7: Maps ny nod lokal obalans 11 lokal obalans
27 Enkelrotation: princip nederst lokal obalans alltför djup nod balansen återställ d Maps 27
28 Enkelrotation: exempel 5 obalans alltför djup nod Balansen återställ d Maps 28
29 Dubbelrotation: princip nederst lokal obalans alltför djup nod balansen återställ d Maps 29
30 Dubbelrotation: exempel obalans alltför djup nod balansen återställ d Maps 30
31 Trenodsomstrukturering Enkel och dubbelrotationer kallas med ett gemensamt namn trenodsomstruktueringar. Vi letar upp tre noder: den nedersta noden med lokal obalans samt dess barn och barnbarn så att barnet och barnbarnet tillhör delträd som har blivit alltför djupa. Dessa tre noder bestämmer fyra delträd. Vid enkelrotation gör man barnet till ny förälder med den gamla föräldern och barnbarnet som nya barn. Vid dubbelrotation gör man barnbarnet till ny förälder med gamla föräldern och barnet som nya barn. Maps 31
32 Borttagning i AVL-träd Borttagning: som i binära sökträd Om obalans uppkommer omstrukturera med rotationer! Omstrukturering i delträd kan ge upphov till obalans högre upp vi kan behöva omstrukturera flera gånger Jfr: insättning räcker att omstrukturera en gång (kring nedersta obalanserade noden)! Maps 32
33 Splayträd Binärt sökträd Behöver ej vara balanserade som AVLträd Nycklar som man ofta letar efter skall ligga högt upp i trädet regeln: 90% av sökningar är efter 10% av nycklarna Maps 33
34 Splayträd Insättning, sökning och borttagning som i vanligt binärt sökträd, följda av en splay, dvs man omstrukturerar trädet så att den sist besökta nyckeln placeras i roten. Den amorterade kostnaden är O(log n). Ingen ombalansering som i AVL-träd (eller som i (2,4)-träd eller ommålning som i rödsvarta träd, mer senare). Maps 34
35 Zig-zig Maps 35
36 Zig-zag (jfr dubbelrotation) Maps 36
37 Zig Maps 37
38 Exempel: sätt in Maps 38
39 Exempel: sätt in 11 zig zag Maps 39
40 Exempel: sätt in 11 zig zig Maps 40
41 Enkellänkade binära träd En nod innehåller Pekare till element (elementet självt om primitiv typ) Pekare till vänster barn Pekare till höger barn A B D C E Maps 41
42 Att lagra binära träd i fält exempel 2 Ett binärt träd 5 6 Samma träd lagrat i ett fält Maps 42
43 Att lagra binära träd i fält - exempel 0 Ett binärt träd 1 2 Samma träd lagrat i ett fält Maps 43
44 Att lagra binära träd i fält allmän princip Roten lagras i cell 0 Om en viss nod lagras i cell i så lagras - vänster barn i cell 2i höger barn i cell 2i + 2 (Obs. G&T lägger roten i 1 och barnen i 2i och 2i + 1) Ett binärt träd är fullständigt om dess n noder lagras i cellerna 0,, n-1. Om fullständiga binära träd lagras i fält har inga tomma mellanrum! Obs. Om våra träd växer kan vi behöva dynamiska (utvidgbara) fält! Maps 44
45 (2,4)-träd Maps 45
46 Ett (2,4)-träd till Maps 46
47 (2,4)-träd Varje nod lagrar 1-3 nycklar (+ värden) En inre nod som lagrar n nycklar har n+1 barn Alla löv ligger på samma djup (ett exakt balanserat träd)! Sökträdsegenskapen gäller: de n nycklarna i en nod separerar nycklarna i de n+1 delträden (se nästa bild, boken ger den allmänna egenskapen) Maps 47
48 (2,4)-träd har sökträdsegenskap 2, 8 är mindre än ligger mellan 10 och ligger mellan 15 och 24 27, 32 är större än Maps 48
49 Sökning i (2,4)-träd Exempel: sök efter 30! saknas Maps 49
50 Insättning Kan ge upphov till overflow. Vi måste då splittra en nod (se boken) Exempel: insättning av 30 orsakar overflow nedan: v Sätt in Maps 50 v overflow
51 Röd-svarta träd v z Maps 51
52 Rödsvarta träd: binära sökträd som representerar (2,4)-träd Ett röd-svart träd är ett binärt sökträd vars noder är färgade röda eller svarta Så här gör man om (2,4)-träd till rödsvarta träd: eller Maps 52
53 Röd-svarta träd Roten är svart Barnen till en röd nod är svarta Alla löv har samma svart-djup, dvs samma antal svarta förfäder (inklusive lövet självt). Detta motsvarar balanseringskravet på (2,4)-träd Maps 53
54 Insättning i röd-svarta träd 1. Använd först algoritmen för insättning i binära sökträd! 2. Färga den nya noden röd (undantag: den nya noden är rot)! 3. Vi kan då få en dubbel röd strukturera om eller måla om! dubbel röd ny nod Maps 54
55 Ommålning Poängen med röd-svarta träd är att det är billigare att måla om än att omstrukturera trädet som man gör med (2,4)-träd! (Jfr hur man handskas med overflow i (2,4)- träd.) 9 måla röd måla svart måla svart Maps 55
56 Omstrukturering Gör en enkelrotation (som i AVL-träd) av 6,7, 8! 7 blir svart med de röda barnen 6 och 8. (Jfr sambandet med (2,4)-träd. Vi behöver här bara se till att vi får en korrekt röd-svart representation av en 4-nod!) dubbel röd 7 8 ny nod Maps 56
57 Några effektiva implementeringar av lexika Sökning Insättning Borttagning Kommentar AVL-träd (2,4)-träd O(log n) O(log n) O(log n) -omstruktureringskostnader Skiplistor O(log n) i medeltal O(log n) i medeltal O(log n) i medeltal -slumpmässig algoritm Röd-svarta träd O(log n) O(log n) O(log n) -Ommålning men inte mycket omstrukturering! -TreeMap i Java Maps 57
58 Några effektiva implementeringar av lexika Sökning Insättning Borttagning Kommentar Splayträd O(log n) amorterad O(log n) amorterad O(log n) amorterad -effektivt för vanligaste nycklar B-träd O(log B n) I/O O(log B n) I/O O(log B n) I/O -för stora lexika/databaser Maps 58
59 B-träd för sökning i externminne Om vår datasamling (mängd, lexikon) inte får plats i primärminnet måste vi lagra delar av den på externminne Tiden det tar för sökningar, insättningar och borttagningar beror huvudsakligen på antalet dataöverföringar från externminnet B-träd generaliserar (2,4)-träd, i stället för noder med mellan 2 och 4 barn har det noder med mellan d/2 och d barn. Storleken d kan vara ett block i externminnet. Maps 59
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Läs merDatastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Läs merDatastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 AVL-träd 1 2 5 2 0 4 1 8 3 2 1 11 1 7 Lecture 6 2 Insättning i AVL-träd Sätt först in det nya elementet på samma sätt som i ett vanligt BST! Det nya trädet kan bli
Läs merDatastrukturer. föreläsning 8. Maps 1
Datastrukturer föreläsning 8 Maps 1 Att hitta den kortaste vägen 0 8 A 4 2 8 B 7 2 C 1 D 2 5 3 9 8 E F 5 3 Lecture 6 2 Viktade grafer I en viktad graf tillordnar vi ett tal till varje båge. Detta tal kallas
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Läs merLösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Läs merFöreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merFöreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Läs merFöreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018
Föreläsning 5 TDDC91,TDDE22,725G97: DALG Föreläsning i Datastrukturer och algoritmer 18 september 2018 Institutionen för datavetenskap Linköpings universitet 5.1 Introduktion find,insert och remove i ett
Läs merDatastrukturer. föreläsning 8. Lecture 6 1
atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.
Läs merDatastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Läs merTentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Läs merFöreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merTentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Läs merEtt generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Läs merLösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Läs merTentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Läs merTentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Läs merFöreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Läs merFöreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Läs merFöreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Läs merSeminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Läs merFöreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
Läs merAlgoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Läs merTentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Läs merADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Läs merSjälvbalanserande AVL-träd Weiss, avsnitt 4.4
Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst
Läs merTräd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Läs merADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Läs merTentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Läs merFöreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merSjälvbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Läs merDatastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
Läs merFöreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Läs merGrafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm
Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat
Läs merGrafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Läs merLösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Läs merFöreläsning 13 Innehåll
Föreläsning 13 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Heapar Implementering av prioritetskö med heap Klassen PriorityQueue i java.util Programexempel LPT-algoritmen
Läs merTDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Läs merFöreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Läs merFöreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Läs merFöreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merÄnnu mera träd: 2-3-träd, B-träd, rödsvarta träd, träd Weiss, avsnitt 4.7, 11.5, 12.2, etc.
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, 2-3-4-träd Weiss, avsnitt 4.7, 11.5, 12.2, etc. Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 2-3-träd [inte i kursboken] Ett 2-3-träd har två sorters
Läs merFöreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 11 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merDatastrukturer. föreläsning 7. Maps 1
Datastrukturer föreläsning 7 Maps 1 Grafer Maps 2 Grafer ett exempel En oriktad graf: Noderna är flygplatser (trebokstavskombinationer) Det finns en båge mellan två noder omm det finns en flyglinje mellan
Läs merInnehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Läs merUpplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)
Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal
Läs merFöreläsning 6. Sökträd: AVL-träd, Multi-Way -sökträd, B-träd TDDC70/91: DALG. Innehåll. Innehåll. 1 AVL-träd
Föreläsning 6 Sökträd: AVL-träd, Multi-Wa -sökträd, B-träd DDC7/9: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer september omm Färnqvist, IDA, Linköpings universitet 6. Innehåll
Läs merBinära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
Läs merProv i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
Läs merTentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Läs merFöreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Läs merFöreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Läs merFöreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merGrafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).
Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara
Läs merTrädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Läs merDAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Läs merProgramkonstruktion och. Datastrukturer
Programkonstruktion och Datastrukturer Repetitionskurs, sommaren 2011 Datastrukturer (Listor, Träd, Sökträd och AVL-träd) Elias Castegren elias.castegren.7381@student.uu.se Datastrukturer Vad är en datastruktur?
Läs merFöreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer
Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)
Läs merFöreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merTentamen kl Uppgift 4. Uppgift 5
2D344 Grundläggande Datalogi för F Tentamen 2003-03-0 kl 4.00 9.00 Inga hjälpmedel. Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ
Läs merFöreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Läs merDatastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Läs merFöreläsning 5: Giriga algoritmer. Kruskals och Prims algoritmer
Föreläsning 5: Giriga algoritmer Kruskals och Prims algoritmer Spännande träd: Om G är en sammanhängande graf så är ett spännande träd ett träd som innehåller alla noder i V (G). Viantarattviharkantvikterw(e)
Läs merFredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
Läs merTentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Läs merTentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Läs merInlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Läs merGraphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
Läs merTentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Läs merFöreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta!
(6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte
Läs merTentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Läs merDatastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Läs merProgrammeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd
Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån
Läs merTabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Läs mer13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
Läs merDatastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 12 2 Innehåll Handledning, labbar, samarbete, etc Sökträd Sökning Delar av kapitel 15.4-15.5 i boken + OHbilderna 3 Handledning/labutlämning Ingen labhandledning
Läs merHitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet
Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig
Läs merFöreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merFöreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Läs merMagnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
Läs merLösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
Läs merDatastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Läs merTentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Läs merInformationsteknologi Tom Smedsaas 19 augusti 2016
Informationsteknologi Tom Smedsaas 19 augusti 016 VL-träd Definition Ett VL-träd är ett binärt sökträd där det för varje nod gäller att skillnaden i höjd mellan nodens vänster och höger subträd är högst
Läs merOMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 140818 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna. Betygsgräns: *** OBS *** Kurs:
Läs merORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150112 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
Läs mer