Föreläsning Datastrukturer (DAT036)
|
|
- Maja Jakobsson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson
2 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd
3 Starkt sammanhängande komponenter
4 Uppspännande skog Graf, och en möjlig skog:
5 I Haskell type Forest = [Tree] data Tree = Root Vertex [Edge] type Vertex = Integer data Edge = Regular Tree Other Kind Vertex data Kind = Forward Back Cross -- Börjar varje sökning i den första obesökta -- listnoden dfs :: Graph -> [Vertex] -> Forest dff :: Graph -> Forest dff g = dfs g (vertices g)
6 Traversering -- Alla trädnoder, i preorder (vänster till höger) preorderlr :: Tree -> [Vertex] -- Alla trädnoder, i preorder (höger till vänster) -- Motsvarar att traversera skogen i postordning -- (vänster till höger), och pusha noderna på en -- till att börja med tom stack preorderrl :: Forest -> [Vertex]
7 SCC-algoritm -- Reverserar grafen opposite :: Graph -> Graph -- Resultatet är omvänt topologiskt sorterat sccs :: Graph -> [[Vertex]] sccs g = map preorderlr (dfs g stack) where stack = preorderrl (dff (opposite g))
8 Ger följande funktion en lista av starkt sammanhängande komponenter som svar? sccs :: Graph -> [[Vertex]] sccs g = map preorderlr (dfs (opposite g) stack) where stack = preorderrl (dff g)
9 Dugga
10 Duggaresultat Uppgift 1 42/73 Uppgift 2 24/73 Uppgift 3 16/73
11 Uppgift 1 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { minsert(i + j, qdelete-min()); } } insert: O(1) Totalt: O(n 2 ) delete-min: O(log q ) Totalt: O(n 2 log n 2 ) = O(n 2 log n) Totalt: O(n 2 + n 2 log n) = O(n 2 log n) Noggrannare analys: Θ(n 2 log n)
12 Uppgift 1 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { minsert(i + j, qdelete-min()); } } Vanliga misstag: O(log(n 2 )) = O(n), totalt O(n 3 ) Däremot: O(log(2 n )) = O(n) O(log(n 2 )) = O(log n) O(n 2 n) = O(n 2 ) (?) Däremot: O(n 2 + n) = O(n 2 )
13 Uppgift 2 Implementera en metod som sätter in ett element först i en cirkulär array, på konstant tid: A[] queue; // Arrayen Invariant: queuelength > 0 int size; // Köns storlek // Invariant: 0 <= size <= queuelength int front; // Invariant: 0 <= front <= queuelength // Om size > 0 pekar front på köns första // element Om size > 1 pekar // (front + 1) % queuelength på köns // andra element Och så vidare
14 // Sätter in a först i kön Om kön är full lämnas den // oförändrad Resultatet är true om elementet sattes // in, och annars false Tidskomplexitet: O(1) public boolean push(a a) { if (size == queuelength) { return false; } size++; if (front <= 0) { front = queuelength; } front--; queue[front] = a; } return true;
15 Uppgift 2 Några misstag: Inte cirkulär array Inte konstant tid (flyttar alla element) Användning av länkade listor (?) Insättning sist i kön Ej size++
16 Uppgift 2 Några misstag: Inte cirkulär array Inte konstant tid (flyttar alla element) Användning av länkade listor (?) Insättning sist i kön Ej size++ Testa!
17 Uppgift 3 new Priority-queue(P )/empty(p ): O(1) insert(v,p): O(log n) delete-min(): O(log n) delete-small(): Tar bort alla värden vars prioritet är mindre än P, O(1)
18 Uppgift 3 Två prioritetsköer: En för värden vars prioritet är mindre än P En för värden med högre prioritet
19 Uppgift 3 Några problem: Det är svårt att implementera en heap från grunden Använd standarddatastrukturer! Hashtabell istället för prioritetskö delete-small: Ej O(1)
20 Sökträd
21 Binära sökträd Binära träd med sökträdsegenskapen: Tomma binära träd är sökträd Ett icketomt binärt träd är ett sökträd om: Vänster och höger delträd är sökträd och alla element i vänstra delträdet < elementet i roten < alla element i högra delträdet
22 Binära sökträd Behöver kunna jämföra element, t ex med komparator Komparatorn antas (oftast?) implementera en total ordning
23 Komparator i Haskell Typklassen Ord innehåller compare: compare :: Ord a => a -> a -> Ordering data Ordering = LT EQ GT compare 2 3 = LT compare 2 2 = EQ compare 3 2 = GT
24 Binära sökträd Sökträd kan användas för att implementera utökad mängd-/avbildnings-adt: Konstruerare: Tom mängd/avbildning member(k)/lookup(k) insert(k)/insert(k,v) find-min() delete-min() delete(k) iterator(): Går igenom elementen i sorterad ordning
25 Binära sökträd Sökträd kan användas för att implementera utökad mängd-/avbildnings-adt: empty: Tom mängd/avbildning member k t/lookup k t insert k t/insert k v t delete-min t delete k t inorder t: En sorterad lista med alla element
26 Vilka träd är binära sökträd? A: B: C: D: E: F:
27 Obalanserade binära sökträd En möjlig implementation: module BinarySearchTree (Tree, empty, member, insert, deletemin, delete, inorder) where data Tree a = Empty Node (Tree a) a (Tree a) empty :: Tree a empty = Empty
28 Obalanserade binära sökträd data Tree a = Empty Node (Tree a) a (Tree a) member :: Ord a => a -> Tree a -> Bool member x Empty = False member x (Node l y r) = case compare x y of LT -> member x l EQ -> True GT -> member x r
29 Obalanserade binära sökträd insert :: Ord a => a -> Tree a -> Tree a insert x Empty = Node Empty x Empty insert x (Node l y r) = case compare x y of LT -> Node (insert x l) y r EQ -> Node l x r -- Skriver över GT -> Node l y (insert x r) deletemin :: Tree a -> Maybe (a, Tree a) deletemin Empty = Nothing deletemin (Node l x r) = case deletemin l of Nothing -> Just (x, r) Just (min, l) -> Just (min, Node l x r)
30 Obalanserade binära sökträd Hur tar man bort ett element? Förslag: Hitta nod som ska tas bort (om någon) Lätt om noden inte har något högerbarn Annars: Ta bort högra delträdets minsta elementet, använd som nodens innehåll Alternativ: Lat borttagning
31 Obalanserade binära sökträd delete :: Ord a => a -> Tree a -> Tree a delete x Empty = Empty delete x (Node l y r) = case compare x y of LT -> Node (delete x l) y r GT -> Node l y (delete x r) EQ -> case deletemin r of Nothing -> l Just (min, r) -> Node l min r
32 Obalanserade binära sökträd inorder :: Tree a -> [a] inorder Empty = [] inorder (Node l x r) = inorder l ++ (x : inorder r)
33 Obalanserade binära sökträd inorder :: Tree a -> [a] inorder Empty = [] inorder (Node l x r) = inorder l ++ (x : inorder r) Tidskomplexitet för xs ++ ys: Θ( xs )
34 Vad är värstafallstidskomplexiteten för inorder t (om t innehåller n element)? Θ(1) Θ(log n) Θ(n) Θ(n log n) Θ(n 2 ) Θ(n 2 log n) Θ(n 3 )
35 Obalanserade binära sökträd Mer effektivt med ackumulator: inorder :: Tree a -> [a] inorder t = inorder' t [] where inorder' :: Tree a -> [a] -> [a] inorder' Empty xs = xs inorder' (Node l x r) xs = inorder' l (x : inorder' r xs)
36 Obalanserade binära sökträd Kanske mer idiomatiskt: inorder :: Tree a -> [a] inorder t = inorder' t [] where inorder' :: Tree a -> ([a] -> [a]) inorder' Empty = id inorder' (Node l x r) = inorder' l (x :) inorder' r
37 Obalanserade binära sökträd En möjlig implementation: public class BinarySearchTree <A extends Comparable<? super A>> { private class TreeNode { A contents; TreeNode left; // null om vänster barn saknas TreeNode right; // null om höger barn saknas } TreeNode(A contents) { thiscontents = contents; } private TreeNode root; // null om trädet är tomt
38 Obalanserade binära sökträd Iterativ kod: public boolean member(a a) { TreeNode here = root; while (here!= null) { int cmp = acompareto(herecontents); if (cmp < 0) { here = hereleft; } else if (cmp > 0) { here = hereright; } else return true; } } return false;
39 Obalanserade binära sökträd Rekursiv kod (varning för stack overflow): public void insert(a a) { root = insert(a, root); } private TreeNode insert(a a, TreeNode n) { if (n == null) return new TreeNode(a); } int cmp = acompareto(ncontents); if (cmp < 0) nleft = insert(a, nleft); else if (cmp > 0) nright = insert(a, nright); else ncontents = a; // Skriver över return n;
40 Obalanserade binära sökträd Värstafallstidskomplexitet: inorder: Θ(storlek) deletemin: Θ(höjd) member, insert, delete: Θ(höjd), givet att jämförelser tar konstant tid Höjd: Värsta fallet: Θ(storlek) Värsta fallet uppstår t ex om man sätter in elementen 1, 2, 3, 4, Kan vi se till att värstafallshöjden är Θ(log storlek)?
41 Balanserade sökträd
42 Balanserade sökträd Sökträd som är balanserade, med höjden Θ(log storlek): AVL-träd (Adelson-Velskii & Landis) Röd-svarta träd B + -träd
43 AVL-träd Invariant (för varje nod): Vänster och höger delträd har samma höjd, ±1 Operationer som ändrar trädets struktur använder (ibland) rotationer för att återställa invarianten
44 Vilka träd är AVL-träd? A: B: C: D: E: F:
45 Insättning i AVL-träd Skiss av en algoritm: Sätt in noden som vanligt Gå tillbaka mot roten Vid första obalanserade noden: rotation Antingen enkel- eller dubbelrotation (se tavlan eller boken) Det räcker med en rotation för att göra trädet balanserat
46 Sammanfattning Idag: Starkt sammanhängande komponenter Sökträd Nästa gång: Mer om sökträd
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-10-30 Repetition Analys av tidskomplexitet. Kostnadsmodeller. Asymptotisk komplexitet/notation. Dynamiska arrayer. Amorterad tidskomplexitet
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018
Föreläsning 5 TDDC91,TDDE22,725G97: DALG Föreläsning i Datastrukturer och algoritmer 18 september 2018 Institutionen för datavetenskap Linköpings universitet 5.1 Introduktion find,insert och remove i ett
DAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Lösningsförslag för tentamen i Datastrukturer (DAT036) från
Lösningsförslag för tentamen i Datastrukturer (DAT036) från 2011-12-16 Nils Anders Danielsson 1. Låt oss benämna indatalistan strängar. Vi kan börja med att beräkna varje strängs frekvens genom att använda
Föreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2014-04-25, 14:00 18:00. Författare: Nils Anders Danielsson. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker
Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Föreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt
Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
Självbalanserande AVL-träd Weiss, avsnitt 4.4
Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1
Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Datastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad
F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor
Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs 2013 12 19 1. a) En samling element där insättning och borttagning
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34
Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)
Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4
Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 11 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Algoritmer och datastrukturer
Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad
Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 AVL-träd 1 2 5 2 0 4 1 8 3 2 1 11 1 7 Lecture 6 2 Insättning i AVL-träd Sätt först in det nya elementet på samma sätt som i ett vanligt BST! Det nya trädet kan bli
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Datastrukturer i Haskell
Datastrukturer i Haskell Bror Bjerner Inst. för data- och informationsteknik Göteborgs universitet & Chalmers tekniska högskola 2010 1 Fibbonacci Om vi beräknar det n:te fibonnacitalet enligt sin dubbelrekursiva
Datastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet alanserade binära sökträd VL-träd Datastrukturer som passar för sökning ntag att vi i ett
Tentamen Datastrukturer D DAT 036/DIT960
Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Föreläsning 6. Sökträd: AVL-träd, Multi-Way -sökträd, B-träd TDDC70/91: DALG. Innehåll. Innehåll. 1 AVL-träd
Föreläsning 6 Sökträd: AVL-träd, Multi-Wa -sökträd, B-träd DDC7/9: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer september omm Färnqvist, IDA, Linköpings universitet 6. Innehåll
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Tentamen, EDA690 Algoritmer och Datastrukturer, Helsingborg
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen, EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19, 8.00 13.00 Anvisningar: Denna tentamen består av 4 uppgifter. Preliminärt
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Datastrukturer som passar för sökning. Föreläsning 11 Innehåll. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, VL-träd Jämföra objekt interfacet omparable Interfacet omparator
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Symboliska konstanter const
(5 oktober 2010 T11.1 ) Symboliska konstanter const Tre sätt som en preprocessormacro med const-deklaration med enum-deklaration (endast heltalskonstanter) Exempel: #define SIZE 100 const int ANSWER =
Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två
Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana
Träd. Ett träd kan se ut på detta sätt:
Träd En lista är en struktur som är enkel att hantera men som inte är så effektiv ur söksynpunkt. Att leta efter en viss nod i en lista med n noder kommer i genomsnitt att kräva n/2 jämförelser. Detta
Länkade strukturer, parametriserade typer och undantag
Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer
Föreläsning 14 Innehåll
Föreläsning 14 Innehåll Abstrakta datatyper, datastrukturer Att jämföra objekt övriga moment i kursen Om tentamen Skriftlig tentamen både programmeringsuppgifter och teoriuppgifter Hitta fel i fingerade
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad
Lösningsförslag till exempeltenta 1
Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i