Tentamen Datastrukturer (DAT036)
|
|
- Björn Fransson
- för 6 år sedan
- Visningar:
Transkript
1 Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: , 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på eller anknytning Besöker tentamenssalarna ca 9:30 och ca 11:30. Godkända hjälpmedel: Kursboken (Data Structures and Algorithm Analysis in Java, Weiss, valfri upplaga), handskrivna anteckningar. För att få betyget n (3, 4 eller 5) måste du lösa minst n uppgifter. Om en viss uppgift har deluppgifter med olika gradering så räknas uppgiften som löst om du har löst alla deluppgifter med gradering n eller mindre. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre allvarliga misstag kan eventuellt godkännas (kanske efter en helhetsbedömning av tentan; för högre betyg kan kraven vara hårdare). Lämna inte in lösningar för flera uppgifter på samma blad. Skriv din tentakod på varje blad. Lösningar kan underkännas om de är svårlästa, ostrukturerade eller dåligt motiverade. Pseudokod får gärna användas, men den får inte utelämna för många detaljer. Om inget annat anges så kan du använda kursens uniforma kostnadsmodell när du analyserar tidskomplexitet (så länge resultaten inte blir uppenbart orimliga). 1
2 1. (Lätt.) Skriv ett effektivt program som tar en lista av strängar, beräknar varje strängs frekvens (hur många gånger den förekommer i listan), och skriver ut strängarna sorterade efter frekvens (i fallande ordning). Om två strängar har samma frekvens spelar ordningen ingen roll. Exempel: Lista: "elefant", "giraff", "lodjur", "elefant", "elefant" Utskrift: elefant lodjur giraff Förklara implementationen, och analysera programmets tidskomplexitet. Din analys ska ta hänsyn både till listans längd n, och antalet tecken w i den längsta strängen. Var tydlig med vilka antaganden du gör i din analys. Standarddatastrukturer och -algoritmer från kursen behöver inte förklaras, men däremot motiveras. Om pseudokod används måste den vara detaljerad. 2. (Lätt.) Betrakta följande Javaklass: // Trädnoder med föräldrapekare. // // Invariant: Om this.parent inte är null så gäller antingen // this.parent.left = this // eller // this.parent.right = this. public class Node<A> { public A contents; // Innehåll. public Node<A> left; // Vänster delträd. public Node<A> right; // Höger delträd. public Node<A> parent; // Förälder. Är följande implementation av enkelrotation korrekt? Motivera (gärna med figurer), och om något är fel, visa hur man kan åtgärda felet. (Eventuella problem har inget med Java att göra. Koden kompilerar utan problem.) 2
3 // Roterar upp noden child förbi sin förälder. // // Noden child samt dess förälder och förälderns förälder // måste vara icke-null. public static <A> void rotateup(node<a> child) { // Förfäder. Node<A> parent = child.parent; Node<A> grandparent = parent.parent; // Uppdatera föräldrapekare. child.parent = grandparent; parent.parent = child; // Uppdatera barnpekare. if (parent.left == child) { parent.left = child.right; child.right = parent; else { parent.right = child.left; child.left = parent; // Uppdatera pekaren från "farföräldern". if (grandparent.left == parent) { grandparent.left = child; else { grandparent.right = child; 3
4 3. Uppgiften är att konstruera en datastruktur som implementerar en variant av avbildnings-adtn ( map-adtn ). Anta att nycklar är totalt ordnade och att det finns en komparator som avgör hur två nycklar k och k är relaterade (k < k, k = k eller k > k ). ADTn har följande operationer: empty: Skapar en tom avbildning. insert(k, v): Lägger till en bindning k v till avbildningen. Om en bindning k v redan finns i avbildningen så tas den bort. lookup(k): Om en bindning k v finns i avbildningen så ger den här operationen v som svar, och annars meddelas på något lämpligt sätt att en sådan bindning saknas. remove-smaller(k): Tar bort alla bindningar k v där k < k. Övriga bindningar påverkas inte. Den här uppgiften har graderade deluppgifter: För trea: Implementera ovanstående ADT, förklara hur din implementation fungerar, och analysera operationernas tidskomplexitet. Standarddatastrukturer och -algoritmer från kursen behöver inte beskrivas i detalj. För att bli godkänd måste du se till att operationerna har följande tidskomplexiteter (antingen i värsta fall, eller amorterat): empty: O(1). insert: O(log n). lookup: O(log n). remove-smaller: O(n log n). Här är n antalet bindningar i avbildningen. Du kan anta att element kan jämföras på konstant tid. För fyra: Som för trea, men remove-smaller ska ha tidskomplexiteten O(log n). 4
5 4. Man kan sortera riktade acykliska grafer (DAGs) topologiskt genom att göra en djupet först-sökning och pusha noderna på en stack i postordning. För trea: Implementera den här algoritmen. Skriv en funktion (metod) som tar en graf och ger tillbaka en lista med grafens noder i topologisk ordning. Exempel: Graf: Möjligt resultat: 0, 1, 2, 3, 4. Var tydlig med hur du representerar grafer, och hur djupet förstsökningen utförs. Du behöver inte beskriva implementationer av stackar och listor i detalj. För fyra: Analysera din implementations tidskomplexitet (noggrant, det räcker inte att skriva djupet först-sökning tar si och så lång tid, du måste analysera din egen implementation). 5. (Svår.) Betrakta följande variant av list-adtn: empty: Skapar en tom lista. insert(x): Lägger till x sist i listan. delete-last: Tar bort och ger tillbaka listans sista element. Krav: Listan får inte vara tom. Man kan implementera den här ADTn med en dynamisk array på följande sätt: 1 empty: Allokera en array med längd ett. insert(x): Om arrayen är full: fördubbla arrayens storlek. Stoppa in x på den första lediga positionen. delete-last: Ta bort det sista elementet från arrayen. Om arrayens längd c är minst 4, och den innehåller c/4 element, halvera arrayens storlek. Ge tillbaka det sista elementet. Notera att arrayens längd hela tiden är 2 för något k N. Din uppgift är att bevisa att alla operationer tar amorterat konstant tid. 1 Notera att den här pseudokoden inte är detaljerad. 5
6 6. (Svår.) Handelsresandeproblemet kan formuleras så här: Givet en komplett, 2 viktad, oriktad graf med minst två noder, hitta en kortaste hamiltonsk cykel. Med andra ord, hitta en väg som besöker alla noder exakt en gång, förutom att den börjar och slutar i samma nod, och är minst lika kort som alla andra sådana vägar. Lös följande variant av handelsresandeproblemet effektivt: Kanternas vikter är ickenegativa. Du kan anta att de är naturliga tal. Grafen uppfyller triangelolikheten: Låt d(u, v) stå för vikten av kanten mellan noderna u och v. I så fall gäller för alla noder u, v och w att d(u, w) d(u, v) + d(v, w). Du behöver inte hitta en kortaste hamiltonsk cykel, det räcker att hitta en hamiltonsk cykel som är max dubbelt så lång som de kortaste. Standarddatastrukturer och -algoritmer från kursen behöver inte förklaras. Motivera utförligt varför din lösning är korrekt och effektiv. Tips: Använd ett minsta uppspännande träd. 2 I en komplett graf finns det en kant mellan noderna och om och endast om. 6
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2014-04-25, 14:00 18:00. Författare: Nils Anders Danielsson. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
Lösningsförslag för tentamen i Datastrukturer (DAT036) från
Lösningsförslag för tentamen i Datastrukturer (DAT036) från 2011-12-16 Nils Anders Danielsson 1. Låt oss benämna indatalistan strängar. Vi kan börja med att beräkna varje strängs frekvens genom att använda
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
DAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 11 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
Föreläsning 1 Datastrukturer (DAT037)
Föreläsning 1 Datastrukturer (DAT037) Fredrik Lindblad 1 30 oktober 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Tentamen Datastrukturer D DAT 036/DIT960
Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Självbalanserande AVL-träd Weiss, avsnitt 4.4
Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-10-30 Repetition Analys av tidskomplexitet. Kostnadsmodeller. Asymptotisk komplexitet/notation. Dynamiska arrayer. Amorterad tidskomplexitet
Datastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
OBJEKTORIENTERAD PROGRAMVARUUTVECKLING. Övningstentamen 1
Institutionen för Data- och informationsteknik JSk TENTAMEN OBJEKTORIENTERAD PROGRAMVARUUTVECKLING Övningstentamen 1 OBS! Det kan finnas kurser med samma eller liknande namn på olika utbildningslinjer.
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Exempeltenta GruDat 2002/2003
Exempeltenta GruDat 2002/2003 Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ ger noll poäng på uppgiften. Obs: Den riktiga tentan kommer
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Tentamen, EDA690 Algoritmer och Datastrukturer, Helsingborg
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen, EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19, 8.00 13.00 Anvisningar: Denna tentamen består av 4 uppgifter. Preliminärt
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Träd. Rot. Förgrening. Löv
Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
(6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Datastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
1 (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Föreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
Data- och Programstrukturer Provmoment: Ladokkod: Tentamen ges för: Omtentamen NDP011 Systemarkitektprogrammet 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:
Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Tentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Anmälningskod: Lägg uppgifterna i ordning. Skriv uppgiftsnummer (gäller B-delen) och din kod överst i högra hörnet på alla papper
Tentamen Programmeringsteknik II 2018-10-19 Skrivtid: 8:00 13:00 Tänk på följande Skriv läsligt. Använd inte rödpenna. Skriv bara på framsidan av varje papper. Lägg uppgifterna i ordning. Skriv uppgiftsnummer
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad
Lösningsförslag till exempeltenta 1
Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon