Träd. Rot. Förgrening. Löv
|
|
- Rebecka Lundgren
- för 9 år sedan
- Visningar:
Transkript
1 Träd
2 Träd Rot Förgrening Löv
3 Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent Avd. chef Intendent Pappersvändare Pappersvändare Pappersvändare
4 Exempel: Innehållsförteckning Mastering Algorithms with C I Preliminaries Introduction Pointer Manipulation Pointer fundamentals Storage allocation Aggregates... etc Recursion Analysis of Algorithms II Data Structures III Algorithms Löv Förgrening Rot
5 Exempel: Filkatalogstruktur Rot Förgrening Löv
6 Exempel: Programrepresentation Rot Program Förgrening foo() bar() baz() while () return; return; return; if Löv x = ; then y = ; else z =; 42 x 13
7 Trädexempel... Fönster på skärmen Widgets i fönstren Släktträd etc.
8 Binära träd En speciell kategori av träd Varje förgrening går till högst två noder Lite enklare då det är en specialisering Vi sätter fokus på binära träd...
9 ADT:n Binärt träd
10 Några begrepp Rutorna kallas noder (nodes), de innehåller något slags data som är av intressen för användningen Direkt uder en nod finns högst två noder, barn (child, kid). Specifikt: Left child, right child. Direkt över en nod finns högst en nod, dess förälder (parent) Noden som inte har någon annan över sig är rot (root) Anfäder (ancestors) alla över Ättlingar (descendants) alla under En noder som saknar barn är ett löv (leaf) Skog (forest) Trädhöjd
11 ADT:n Binärt träd Rot A: B: C: D: E: F: Children(A) = {B, C} Children(C) = {D} Children(E) = { }
12 ADT:n Binärt träd A: B: C: D: E: F: Parent(C) = A Parent(A) = finns ej
13 ADT:n Binärt träd A: B: C: D: E: F: Ancestors(D) = {C, A} Ancestors(A) = { }
14 ADT:n Binärt träd A: B: C: D: E: F: Descendants(C) = {D, E, F} Descendants(A) = {B, C, D, E, F}
15 ADT:n Binärt träd A: B: C: D: E: F: C utgör roten i ett delträd
16 Definition Ett binärt träd kan definieras genom följande rekursiva definition: Ingen nod är ett binärt träd (ett tomt binärt träd) En nod med två barnträd, ett vänster barnträd och ett höger barnträd, är ett binärt träd Grafiskt kan vi illustrera detta på följande sätt:
17 ADT:n Binärt träd A: B: C: D: E: F: Det tjänar dock inget syfte att rita ut dessa
18 ADT:n Binärt träd A: B: C: D: E: F: Man kan visa med stopmarkeringar istället - motsvarar NULL-pekare i C.
19 Övning Precis som i fallet med listor, stackar och köer vill göra en generell implementation av ADT:n BTree. Typen på data som kan lagras i noderna måste därför vara av typen voidpekare i C. Skriv en lämplig structdefinition för BTree. Deklarationen i h-filen ser ut så här: typedef struct BTree BTree; Detta är samtidigt typen på noderna.
20 ADT:ns operationer Sätta in en ny nod till vänster/höger Skapa nytt träd av två delträd Ta bort vänster/höger barnträd Tala om antalet noder Tala om höjden på trädet Svara på om nod är löv/rot Returnera data Returnera vänster/höger barnnod
21 Interfacet i C Btree *BtreeCreate(void *data); void BtreeDestroy(Btree *node); void *BTreeData(BTree *node); void BTreeInsertLeft(BTree *node, BTree *left); BTreeInsertRight BTree *BTreeLeft(BTree *node); BtreeRight void BTreeUnlinkLeft(BTree *node); BTreeUnlinkRight int BTreeSize(BTree *node); int BTreeHeight(BTree *node); int BTreeIsLeaf(BTree *node); int BTreeIsRoot(BTree *node);
22 Övningar (1) Implementera funktionen BTreeInsertLeft. Tänk på vilka fall som finns. Om du behöver anpassa deklarationen så gör det. Skriv slutligen den kommentar som måste finnas i h-filen. void BTreeInsertLeft(BTree *BTree, void *data); (2) Skriv koden som använder denna ADT för att bygga ett nytt träd givet två delträd (som kommer att bli barnträd till det nya). Skriv det som en funktion som tar lämpliga parametrar. Tycker du att detta skulle kunna vara en funktion som istället är en del av ADT:n.
23 Traversering av binära träd Travesrering (att klättra omkring i trädet och besöka noderna) sker oftast från vänster till höger.
24 Traversering A: B: C: D: E: F: Syftet med klättringen är att göra något med data i noderna som passeras. Ordningen mellan det man i en nod behandlar data relativt besöken av barnträden påverkar i allmänhet resultatet.
25 Traversering A: B: C: D: E: F: Antag att behandla data är att skriva ut data Antag att data är den bokstav som står intill noden Antag att behandling av data sker innan barnträden besöks Resulat? Skriv på ett papper!
26 Traversering A: B: C: D: E: F: Vi byter: Antag att behandling av data sker efter att barnträden besöks Resulat?
27 Traversering De metoder som brukar användas kallas Preorder: behandla data före barnträden Inorder: behandla data mellan barnträden Postorder: behandla data efter barnträden
28 Övning Skriv en funktion som tar ett binärt träd som input och som använder ADT:n BTree för att skriva ut alla trädnoder enligt postorder traversering. Anta att det data som finns i noderna är pekare till strängar. Från interfacet till BTree: Btree *BtreeCreate(void *data); void *BTreeData(BTree *node); void BTreeInsertLeft(BTree *node, BTree *left); BTree *BTreeLeft(BTree *node); void BTreeUnlinkLeft(BTree *node); int BTreeIsLeaf(BTree *node); int BTreeIsRoot(BTree *node);
Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt
Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index
Läs merDatastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Läs merFöreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Läs merInom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två
Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana
Läs merInlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Läs merDatastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Läs merFöreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning
Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod
Läs merTräd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Läs merFöreläsning 13. Träd
Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.
Läs merBINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X
Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Läs merAlgoritmer och datastrukturer 2012, föreläsning 6
lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på
Läs merVad har vi pratat om i kursen?
Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet
Läs merFöreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Läs merTrädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Läs merDatastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Läs merProgrammering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Läs merProgrammeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd
Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån
Läs merFöreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Läs merTentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Läs merTräd - C&P kap. 10 speciellt binära sökträd sid. 452
Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Läs merProgrammering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34
Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)
Läs merTentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Läs merFöreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Läs merTabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Läs merFöreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Läs merSymboliska konstanter const
(5 oktober 2010 T11.1 ) Symboliska konstanter const Tre sätt som en preprocessormacro med const-deklaration med enum-deklaration (endast heltalskonstanter) Exempel: #define SIZE 100 const int ANSWER =
Läs merFöreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö
Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram
Läs merFöreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Läs merTabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Läs merSjälvbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2
Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:
Läs merAbstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Läs merBinära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
Läs merEtt generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Läs merTeoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?
Läs merDAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Läs merTvå fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)
Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa
Läs merTDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Läs merFöreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Läs merNamn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
Data- och Programstrukturer Provmoment: Ladokkod: Tentamen ges för: Omtentamen NDP011 Systemarkitektprogrammet 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:
Läs merTentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
Läs merLösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Läs merTräd. Ett träd kan se ut på detta sätt:
Träd En lista är en struktur som är enkel att hantera men som inte är så effektiv ur söksynpunkt. Att leta efter en viss nod i en lista med n noder kommer i genomsnitt att kräva n/2 jämförelser. Detta
Läs merF5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad
F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor
Läs merTDDC74 Programmering, abstraktion och modellering DUGGA 2
AID-nummer: Datum: 2011-02-18 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering DUGGA 2 Fredag 18 feb 2011
Läs merTDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18
TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
Läs merFöreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Läs merTentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Läs merTentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Läs merTDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 017-10-7, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
Läs merFöreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Läs merFöreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Läs merLänkade strukturer, parametriserade typer och undantag
Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer
Läs merDatastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Läs merÖvning 2. (Länkade) Listor, noder
Per Sedholm DD30 (tilda3) 03-09-03 Övning Listor, pekare, binära träd, rekursion, komplexitet (Länkade) Listor, noder. Ta bort andra noden (a) Skriv en sats som tar bort andra noden ur en länkad lista.
Läs merTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Läs merLösningsförslag till exempeltenta 1
Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i
Läs merTDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12
TDDC74 Programmering: Abstraktion och modellering Tentamen, lördag 27 augusti 2016, kl 8 12 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Läs merSjälvbalanserande AVL-träd Weiss, avsnitt 4.4
Självbalanserande AVL-träd Weiss, avsnitt 4.4 Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst
Läs merTENTAMEN: Algoritmer och datastrukturer. Läs detta!
(7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgra Börja varje uppgift på ett nytt bla Skriv ditt idnummer på varje blad (så att vi inte slarvar
Läs merSeminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Läs merFöreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Läs merDugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Läs merLösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Läs merFöreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
Läs merTDIU01 Programmering i C++
TDIU01 Programmering i C++ Föreläsning 6 - Klasser Eric Elfving, eric.elfving@liu.se Institutionen för datavetenskap (IDA) Avdelningen för Programvara och system (SaS) Klasser När vi skapade vår lista
Läs merTentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Läs merFöreläsning 14. Träd och filhantering
Föreläsning 14 Träd och filhantering Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder
Läs merTDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Läs merDD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
Läs merFöreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merInlämningsuppgift MiniPlotter
LUNDS TEKNISKA HÖGSKOLA Institutionen för datavetenskap EDAA01 Programmeringsteknik fördjupningskurs Inlämningsuppgift MiniPlotter I den här uppgiften ska ett program som ritar grafer av matematiska funktioner
Läs merTräd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4
Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara
Läs merFöreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Läs merLänkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till:
Länkade listor i C Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Dynamiskt allokerad array Arrayer allokerade på stacken Kan alltså användas till att
Läs merFöreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merFöreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Läs merDet är principer och idéer som är viktiga. Skriv så att du övertygar rättaren om att du har förstått dessa även om detaljer kan vara felaktiga.
Tentamen Programmeringsteknik II 2015-05-26 Skrivtid: 0800 1300 Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja alltid ny uppgift på nytt papper. Lägg
Läs merInnehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Läs merDet är principer och idéer som är viktiga. Skriv så att du övertygar rättaren att du har förstått dessa även om detaljer kan vara felaktiga.
Tentamen Programmeringsteknik II 2013-06-05 Skrivtid: 1400-1700 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja
Läs merTillämpad Programmering (ID1218) :00-13:00
ID1218 Johan Montelius Tillämpad Programmering (ID1218) 2014-03-13 09:00-13:00 Förnamn: Efternamn: Regler Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.
Läs merTentamen Programmeringsteknik II Inledning. Anmälningskod:
Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående
Läs merProv i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
Läs merUpplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)
Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal
Läs merTentamen kl Uppgift 4. Uppgift 5
2D344 Grundläggande Datalogi för F Tentamen 2003-03-0 kl 4.00 9.00 Inga hjälpmedel. Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ
Läs merFöreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1
Läs merOMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 140818 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna. Betygsgräns: *** OBS *** Kurs:
Läs merTDIU01 / 725G
TDIU01 / 725G67 2011-12-16 08-13 Inloggning Börja med att logga in i tentasystemet genom att logga in med användare examx som har lösenordet kluring1. Verifiera att dina uppgifter stämmer och förbered
Läs merFöreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Läs merFöreläsning 15: Repetition DVGA02
Föreläsning 15: Repetition DVGA02 Vad handlar kursen om? Kursen kan i grova drag delas upp i tre delar: 1. Objekt-orienterad programmering 2. Grafiska användargränssnitt 3. Datastrukturer Dessutom genomsyras
Läs merDatastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet alanserade binära sökträd VL-träd Datastrukturer som passar för sökning ntag att vi i ett
Läs merSätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
Läs merDatastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Läs merF4: Mer om OU1, OU2, listor och träd. Carl Nettelblad
F4: Mer om OU1, OU2, listor och träd Carl Nettelblad 2018-04-17 Kodstil Glöm inte bra Javadoc Ge rimliga namn Se till att koden är rätt indenterad Editorn kan hjälpa dig Undvik Kopierad kod Mycket långa
Läs merTentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.
Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något
Läs merFörsättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Läs mer