Föreläsning 8 Datastrukturer (DAT037)
|
|
- Ingvar Persson
- för 7 år sedan
- Visningar:
Transkript
1 Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se 1
2 Innehåll 2 djupet först-sökning topologisk sortering starkt sammanhängande komponenter
3 3 Djupet förstsökning
4 Djupet först-sökning (DFS) 4 Metod för att gå igenom alla noder och kanter. Har tidigare sett bredden först-sökning (kortaste vägen för oviktade grafer). Fungerar för oriktade och riktade grafer.
5 Djupet först-sökning: mall visited = new array with indices {0,, V -1} and all elements equal to false // Startar/startar om sökning. for v {0,, V -1} do if not visited[v] then dfs(v) // Utför sökning. dfs(v) { visited[v] = true } for w {w (v, w) E} do if not visited[w] then dfs(w) 5
6 Djupet först-sökning: mall visited = new array with indices {0,, V -1} and all elements equal to false Θ( V ) // Startar/startar om sökning. for v {0,, V -1} do if not visited[v] then dfs(v) // Utför sökning. dfs(v) { visited[v] = true Θ( V ) ggr Θ( V ) ggr } for w {w (v, w) E} do if not visited[w] then dfs(w) Θ( E ) ggr tot 5
7 Djupet först-sökning 6 Tidskomplexitet: Θ( V + E ) (linjär).
8 Uppspännande skog 7 Depth-first spanning forest: Skog: Mängd av träd. Ett träd för varje toppnivåanrop till dfs. Rekursiva anrop till dfs ger upphov till vanliga trädkanter. Om visited[w] = true får man istället en speciell kant: Bakåtkant: Om kanten pekar uppåt (eller på samma nod). Framåtkant: Om kanten pekar nedåt. Tvärkant: I övriga fall ( åt vänster ).
9 Uppspännande skog Graf: Skog (om vi söker från 0, 1 och 4, och väljer 2 före 3):
10 Djupet först-sökning 9 DFS kan användas för att implementera andra algoritmer. Exempel: Är en oriktad graf sammanhängande? Testa om DFS från godtycklig nod besöker alla noder (utan omstart).
11 Sammanhängande? 10 if V = 0 then return true visited = new array with indices {0,, V -1} and all elements equal to false dfs(0) for v {1,, V -1} do if not visited[v] then return false return true dfs(v) { visited[v] = true for w {w {v, w} E} do if not visited[w] then dfs(w) }
12 11 Topologisk sortering
13 Topologisk sortering 12 Definition: Total ordning av V. Om det finns en väg från v 1 till v 2 så är v 1 < v 2. Exempel: Förkunskapskrav giltig ordning av kurser.
14 Topologisk sortering 13 Ointressant för oriktade grafer. Cykel ingen topologisk sortering. DAGs (riktade acykliska grafer) kan alltid sorteras topologiskt. Tillräckligt villkor för att vara cyklisk: Grafen innehåller minst en nod, och alla noder har ingrad > 0.
15 Topologisk sortering: enkel algoritm 14 r = new empty list while V do if any v V with indegree(v) = 0 then r.add-last(v) remove v from G else raise error: cycle found return r // Nodes, topologically sorted.
16 Topologisk sortering: enkel algoritm 14 r = new empty list while V do if any v V with indegree(v) = 0 then r.add-last(v) remove v from G else raise error: cycle found return r // Nodes, topologically sorted. Kan vi undvika radering?
17 Topologisk sortering: enkel algoritm (2) 15 r = new empty list d = map from vertices to their indegrees // null for nodes in r. repeat V times if d[v] == 0 for some v then r.add-last(v) d[v] = null for each direct successor v' of v do decrease d[v'] by 1 else raise error: cycle found return r // Nodes, topologically sorted.
18 Grafrepresentation 16 Pseudokod: Behöver mer information för tidskomplexitetsanalys. Grafrepresentation (den här gången): Noder numrerade 0, 1,, V 1. Array adjacent med V positioner. adjacent[i] innehåller grannlista (länkad lista) för nod i. r: dynamisk array, d: array.
19 Pseudokod 17 Exempel: // d är en map från nodindex till // /virtuella/ ingrader, de ingrader // respektive nod skulle ha om alla noder i // r togs bort från grafen. Den virtuella // ingraden för noder i r är null. d = new array of size V // Initialisera d. for i in [0,..., V -1] do d[i] = 0 for i in [0,..., V -1] do for each direct successor j of i do d[j]++
20 Pseudokod 17 Exempel: // d är en map från nodindex till // /virtuella/ ingrader, de ingrader // respektive nod skulle ha om alla noder i // r togs bort från grafen. Den virtuella // ingraden för noder i r är null. d = new array of size V // Initialisera d. for i in [0,..., V -1] do d[i] = 0 for i in [0,..., V -1] do for each direct successor j of i do d[j]++ O( V ) ggr O(1)
21 Pseudokod 17 Exempel: // d är en map från nodindex till // /virtuella/ ingrader, de ingrader // respektive nod skulle ha om alla noder i // r togs bort från grafen. Den virtuella // ingraden för noder i r är null. d = new array of size V // Initialisera d. for i in [0,..., V -1] do d[i] = 0 for i in [0,..., V -1] do for each direct successor j of i do d[j]++ O( V ) ggr O(1) O( V ) O( E ) ggr tot O(1)
22 Topologisk sortering: enkel algoritm (2) r = new empty list O(1) d = initiera d enligt koden på föreg. s. O( V + E ) // null for nodes in r. repeat V times if d[v] == 0 for some v then r.add-last(v) d[v] = null for each direct successor v' of v do decrease d[v'] by 1 else raise error: cycle found O( V ) ggr O( V ) O(1) O(1) O( E ) ggr tot O(1) O(1) return r // Nodes, topologically sorted. O(1) Totalt: O( V 2 + E ) = O( V 2 ). 18
23 Topologisk sortering med kö r = new empty list d = map from vertices to their indegrees q = queue with all nodes of indegree 0 while q is non-empty do v = q.dequeue() r.add-last(v) for each direct successor v' of v do decrease d[v'] by 1 if d[v'] = 0 then q.enqueue(v') if r.length() < V then raise error: cycle found return r // Nodes, topologically sorted. 19
24 20 Analysera värstafallstidskomplexiteten. Θ( V ). Θ( E ). Θ( V + E ). Θ( V 2 ). Bonusövning Vad händer om man använder en stack istället för en kö?
25 20 Analysera värstafallstidskomplexiteten. Θ( V ). Θ( E ). Θ( V + E ). Θ( V 2 ). Bonusövning Vad händer om man använder en stack istället för en kö? Svar: O( V + E ). Bonusövning: Fungerar också, samma tidskomplexitet, ev annan ordning.
26 Topologisk sortering med kö r = new empty list d = map from vertices to their indegrees q = queue with all nodes of indegree 0 while q is non-empty do v = q.dequeue() r.add-last(v) for each direct successor v' of v do decrease d[v'] by 1 if d[v'] = 0 then q.enqueue(v') if r.length() < V then raise error: cycle found Θ(1) Θ( V + E ) O( V ) O( V ) ggr Θ(1) Θ(1) O( E ) ggr tot Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) return r // Nodes, topologically sorted. Θ(1) 21
27 Topologisk sortering 22 Kan sortera DAG topologiskt genom att: Utföra DFS. Gå igenom träden i uppspännande skogen i preordning, med skillnaden att (barn)träden gås igenom från höger till vänster. Om grafen kan vara cyklisk så är det inte så lätt att avgöra det. Måste hålla koll på om uppåt- eller tvärkanter uppstår.
28 23 Starkt sammanhängande komponenter
29 Starkt sammanhängande komponenter 24 För riktade grafer: Starkt sammanhängande graf: Om u, v V så finns det en väg från u till v (och vice versa). Starkt sammanhängande komponent (SCC): Maximal starkt sammanhängande delgraf. Om varje SCC byts ut mot en ny nod (en per SCC) får vi en acyklisk multigraf.
30 Starkt sammanhängande komponenter 25 Exempel: Noder: Funktioner. Kanter: Anrop från en funktion till en annan. Funktioner i en SCC är ömsesidigt rekursiva.
31 26 Hur många starkt sammanhängande komponenter innehåller följande graf?
32 26 Hur många starkt sammanhängande komponenter innehåller följande graf? Svar: 6
33 SCC-algoritm 27 Kan vi hitta alla SCCer? Kan hitta alla noder i löv-scc genom DFS (utan omstart) från någon av dem. Kan sedan ta bort (ignorera) löv-sccn och fortsätta med annan löv-scc. Men hur hittar man löv-sccer?
34 SCC-algoritm 28 Utför DFS, gå igenom uppspännande skogen i preordning, från höger till vänster, som i topologisk sortering: Första noden (om någon) måste höra till en rot-scc. Tar man bort alla noder som hör till den SCCn så hör nästa nod (om någon) återigen till en rot-scc. Och så vidare För löv-scc: Utför DFS baklänges (på reverserad graf).
35 SCC-algoritm Utför DFS baklänges. 2. Skapa en nodlista med preorderrl. 3. Utför DFS framlänges, börja hela tiden med första obesökta listnoden. Varje sökning ger en SCC. Tidskomplexitet: Θ( V + E ).
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Lösningsförslag för tentamen i Datastrukturer (DAT036) från
Lösningsförslag för tentamen i Datastrukturer (DAT036) från 2011-12-16 Nils Anders Danielsson 1. Låt oss benämna indatalistan strängar. Vi kan börja med att beräkna varje strängs frekvens genom att använda
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
Föreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Graphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2014-04-25, 14:00 18:00. Författare: Nils Anders Danielsson. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Datastrukturer. föreläsning 8. Lecture 6 1
atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.
Datastrukturer. föreläsning 8. Maps 1
Datastrukturer föreläsning 8 Maps 1 Att hitta den kortaste vägen 0 8 A 4 2 8 B 7 2 C 1 D 2 5 3 9 8 E F 5 3 Lecture 6 2 Viktade grafer I en viktad graf tillordnar vi ett tal till varje båge. Detta tal kallas
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Grafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm
Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 11 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
Föreläsning 1 Datastrukturer (DAT037)
Föreläsning 1 Datastrukturer (DAT037) Fredrik Lindblad 1 30 oktober 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö
Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram
Datastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-10-30 Repetition Analys av tidskomplexitet. Kostnadsmodeller. Asymptotisk komplexitet/notation. Dynamiska arrayer. Amorterad tidskomplexitet
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Grafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).
Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:
6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150112 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
FÖRELÄSNING 11 DATALOGI I
Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Näst nästa gång: Nästa gång: mer grafer (kap 10) Grafer 1 1. ! uppspännande träd. ! minimala uppspännande träd. ! Prims algoritm. !
F9 Läsanvisning: kap 10 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:15 19:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150609 kl. 14:15 19:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. *** OBS ***
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Algoritmer och datastrukturer, föreläsning 11
lgoritmer och datastrukturer, föreläsning 11 enna föreläsning behandlar grafer. En graf har en mängd noder (vertex) och en mängd bågar (edge). Ett exempel är: E F G H Z enna graf har följande mängd av
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Datastrukturer. föreläsning 7. Maps 1
Datastrukturer föreläsning 7 Maps 1 Grafer Maps 2 Grafer ett exempel En oriktad graf: Noderna är flygplatser (trebokstavskombinationer) Det finns en båge mellan två noder omm det finns en flyglinje mellan
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Föreläsning 2: Grafer. Exempel på graf
Föreläsning 2: Grafer Vad är en graf? Terminologi Representationer Genomgång av hörnen i en graf Kortaste väg-problemet Exempel på graf Falun Uppsala Karlstad Västerås Stockholm Eskilstuna Örebro En graf
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160119 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
träd dag graf båge och vikt Grafer definitioner och terminologi
F9 Läsanvisning: kap 0 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
Sökning och sortering
Sökning och sortering Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man mycket data och många sökningar måste
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Sökning och sortering. Sökning och sortering - definitioner. Sökning i oordnad lista. Sökning med vaktpost i oordnad lista
Sökning och sortering Sökning och sortering - definitioner Att söka efter data man lagrat undan för senare användning är vanligt Egentligen har man ingen annan anledning för att lagra undan data Har man
Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Kapitel 9: Grafalgoritmer
Kapitel 9: Grafalgoritmer En graf G = (V, E) karakteriseras av två mängder en ändlig icke-tom mängd V av noder (vertex) en mängd E av bågar (edges eller arcs) varje båge är ett par (v, w), där v, w är
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 140818 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna. Betygsgräns: *** OBS *** Kurs:
Föreläsning 2. Stackar, köer och listor TDDC91,TDDE22,725G97: DALG. Innehåll. 1 ADT stack. 1.1 Tillämpningar
öreläsning 2 Stackar, köer och listor TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 6 september 2018 Magnus Nielsen, IDA, Linköpings universitet x 21 Introduktion
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen Datastrukturer D DAT 036/DIT960
Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15-13:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170331 kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS ***
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Datastrukturer. föreläsning 10. Maps 1
Datastrukturer föreläsning 10 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Klassen BST som definierar binära sökträd med tal som nycklar och enda data. Varje nyckel är unik dvs förekommer endast en
Tentamen Programmeringsteknik II 2017-10-23 Skrivtid: 14:00 19:00 Inledning Skrivningen innehåller ett antal bilagor: Bilagan listsandtrees innehåller fyra klasser: Klassen List med några grundläggande
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Tommy Färnqvist, IDA, Linköpings universitet
öreläsning 3 Stackar, köer och listor TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 10 september 2013 Tommy ärnqvist, IDA, Linköpings universitet 31 Innehåll Introduktion
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings
Föreläsning 4: Kombinatorisk sökning
DD2458, Problemlösning och programmering under press Föreläsning 4: Kombinatorisk sökning Datum: 2009-09-25 Skribent(er): Kristina Nylander, Dennis Ekblom, Marcus Öman Föreläsare: Fredrik Niemelä 1 Introduktion
Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34
Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)