OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15-13:15
|
|
- Birgitta Lundberg
- för 6 år sedan
- Visningar:
Transkript
1 OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd 40p, Godkänd 30p (varav minimum 20p från tentan, 10p från labbarna) Tenta: Max 40p, Med beröm godkänd 34p, Icke utan beröm godkänd 27p, Godkänd 20p Labbarna: Max 20p, Med beröm godkänd 18p, Icke utan beröm godkänd 14p, Godkänd 10p SKRIV TYDLIGT LÄS UPPGIFTERNA NOGGRANT Ange alla antaganden. (1) Ge ett kortfattat svar till följande uppgifter (a)-(j). (a) Vad är big-o för Dijkstras algoritm? (b) Vad är big-o för Floyds algoritm? (c) Vad är big-o för lägga-till-operationen i hashning? (d) Vad gör Warshalls algoritm? (e) Vad gör en postorder traversering av ett binärt träd? (f) Vad är en graf? (g) Vad representerar kanterna i en graf? (h) Vad är ett Free Tree? (i) Vad händer när man lägger till en kant till i ett Free Tree? (j) Vad är abstraktion? DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 1 av 6
2 (2) Ge ett kortfattat svar till följande uppgifter (a)-(e). (a) Skriv rekursiv (pseudo)kod för hitta-operation (find) i ett binärt träd (OBS ej BST). (b) Förklara hur lägga till operationen (add) i en heap fungerar. Se koden nedan. OBS ge inte en översättning kod svenska! Förklara principen och/eller ge ett exempel. Add(H, v) let A = H.array A.size++ i = A.size while i > 1 and A[Parent(i)] < v do A[i] = A[Parent(i)] i = Parent(i) end while A[i] = v end Add (c) Skriv abstrakt rekursiv (pseudo)kod för hitta-operation (find) i en sekvens. Funktionen ska returnera en referens till elementet eller NULLREF om inte värdet finns. (d) Beskriv hur man förvandla ett generellt träd till ett binärt träd. (e) Ge definitionen av ett komplett träd (complete tree). 5p (3) AVL-träd (a) Ge en definition av ett AVL-träd (b) Beskriv med exempel de fyra rotationsoperationerna på ett AVL-träd. 2p (c) Beskriv hut man bestämmer vilken rotationsoperation som behövs för att ombalancera ett AVL-träd. 2p DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 2 av 6
3 (4) Topologisk sortering Vid ett universitet har vissa kurser förkunskapskrav. I datavetenskap kräver kompilatorkonstruktion (DAV D02) programspråk (DAV C02) som förkunskap. Datastrukturer och algoritmer (DAV B03) är ett förkunskapskrav till programspråk, avancerad programmering i C++ (DAV C05), samt projektarbete i Java (DAV C08). Datastrukturer och algoritmer kräver diskret matematik (MAA B06) samt programutvecklingsmetodik (DAV A02). Operativsystem (DAV B01) kräver i sin tur programutvecklingsmetodik och datorsystemteknik (DAV A14) och är förkunskapskrav till C och UNIX (DAV C18), tillämpad datasäkerhet (DAV C17) samt realtidssystem (DAV C01). Objektorienterade designmetoder (DAV D11) kräver bägge avancerad programmering i C++ och software engineering (DAV C19). Hur kan man visa att kompilatorkonstruktion och objektorienterade designmetoder kräver diskret matematik? I vilken ordning ska en student som vill läsa på D-nivå ta alla de ovannämnda kurserna? Metoden som kan användas för att komma fram till en lösning heter topologisk sortering. En variant av topologisk sortering är följande algoritm: Topological Sort tsort(v) -- prints reverse topological order of a DAG from v { mark v visited for each w adjacent to v if w unvisited tsort(w) display(v) Tillämpa den givna algoritmen (ovan) till problemet för att hitta ordning i vilken en student ska läsa kurserna. Använd denna ordning i kurslistan: MB06, A02, A14, B01, B03, C01, C02, C05, C08, C17, C18, C19, D02, D11 Beskriv ett annat sätt att utföra en topologisk sortering? (5) Rekursion 4p Förklara utförligt de för- och nackdelarna med rekursion. Förklara vad en rekursiv definition samt en rekursiv funktion är. Vilka programmeringsmönster finns som direkt resultat av de rekursiva definitionerna för en sekvens och ett binärt träd? Ge exempel och (pseudo)kod för att illustrera din diskussion. 5p DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 3 av 6
4 (6) Hashning I hashning har följande metoder för kollisionshantering presenterats, nämligen 1) Open addressing (closed hashing/linear probing) f(i) = i 2) Quadratic probing f(i) = i * i 3) Double hashing f(i) = i * H 2 (key) Där i är värdet på antalet kollisioner (d.v.s. 1, 2, ). Allmänt sett kan man beskriva kollisionshantering som H(key) + f(i) i varje fall. Anta att H(key) = key mod 10. Hash space = array H[10]. Anta att H 2 (key) = 7 (key mod 7). Dessa metoder kan betraktas som en historisk utveckling d.v.s. att varje metod försöker att lösa problem med den föregående metoden men i sin tur kan introducera nya problem. Tillämpa dessa 3 metoder på sekvensen 4, 36, 44, 5, 7, 64, 24 och visa varje steg i Dina beräkningar samt diskutera för- och nackdelarna med dessa metoder. 3p Vilka resultat är mätbara när man tillämpar dessa metoder? Under vilka omständigheter skulle dubbelhashningsmetoden ovan bete sig på ett likadant sätt som linjärprobning? DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 4 av 6
5 (7) Graf algoritmer (a) Tillämpa Dijkstra_SPT algoritm på den oriktade grafen nedan. Visa varje steg i Dina beräkningar. Rita en bild av grafen och ge kostnadsmatrisen. Börja med nod a. Rita en bild av varje mellanresultatet. (a, b, 10), (a, d, 30), (a, e, 100), (b, c, 50), (c, e, 10), (d, c, 20), (d, e, 60) Dijkstra_SPT ( a ) { S = {a for (i in V-S) { D[i] = C[a, i] E[i] = a L[i] = C[a, i] for (i in 1..( V -1)) { choose w in V-S such that D[w] is a minimum S = S + {w foreach ( v in V-S ) if (D[w] + C[w,v] < D[v]) { D[v] = D[w] + C[w,v] E[v] = w L[v] = C[w,v] 3p DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 5 av 6
6 (b) Tillämpa Prims algoritm på den oriktade grafen nedan. Visa varje steg i Dina beräkningar. Rita en bild av grafen och ge kostnadsmatrisen. Börja med nod a. Rita en bild av varje mellanresultatet. Anta att närlistan (adjacency list) skapas i alfabetisk ordning. (a-3-b, a-3-c, a-3-d, b-3-c, b-3-e, c-3-d, c-3-e, c-3-f, d-3-f, e-3-f). Prim s Algoritm -- antagande: att det finns en kostnadsmatrix C Prim (node v) //v is the start node { U = {v; for i in (V-U) { low-cost[i] = C[v,i]; closest[i] = v; while (!is_empty (V-U) ) { i = first(v-u); min = low-cost[i]; k = i; for j in (V-U-k) if (low-cost[j] < min) { min = low-cost[j]; k = j; display(k, closest[k]); U = U + k; for j in (V-U) if ( C[k,j] < low-cost[j] ) { low-cost[j] = C[k,j]; closest[j] = k; (c) Förklara ingående principen bakom Prims algoritm. OBS: Skriv inte en rad för rad översättning från koden till svenska (engelska) utom ge en beskrivning (dvs en tolkning) av hur algoritmen fungerar vid varje steg. Använd gärna bilder i Din beskrivning. 3p Sedan ge en sammanfattning av principen i två eller tre meningar. 4p Totalt 10p DFR Datastrukturer och algoritmer, DAV B03, Resit Exam Sidan 6 av 6
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:15 19:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150609 kl. 14:15 19:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. *** OBS ***
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160119 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150112 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 140818 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna. Betygsgräns: *** OBS *** Kurs:
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 09:00 14:00
OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160402 kl. 09:00 14:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. *** OBS ***
FACIT TILL TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03
FACIT TILL TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. ***
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03. 120612 kl. 08:15 13:15
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 120612 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A algoritmer Ni som har läst från och med HT 2006 Betygsgräns: *** OBS *** Kurs:
FACIT TILL TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03. 140114 kl. 08:15 13:15
FACIT TILL TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 140114 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna. Betygsgräns: *** OBS
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
FACIT TILL OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:15 19:15
Karlstads universitet DSA omtentamen 150609 - facit Datavetenskap FACIT TILL OMTENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 150609 kl. 14:15 19:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga.
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
FACIT till ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15
FACIT till ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 1609 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna.
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15
TENTAMEN I PROGRAMSPRÅK -- DVG C01 140605 kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
OMTENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13: 15
OMTENTAMEN I PROGRAMSPRÅK -- DVG C01 130823 kl. 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
FÖRELÄSNING 11 DATALOGI I
Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 5 ADT Map/Dictionary, hashtabeller TDDI16: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 16 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 5.1 Innehåll Innehåll
Datastrukturer. föreläsning 8. Maps 1
Datastrukturer föreläsning 8 Maps 1 Att hitta den kortaste vägen 0 8 A 4 2 8 B 7 2 C 1 D 2 5 3 9 8 E F 5 3 Lecture 6 2 Viktade grafer I en viktad graf tillordnar vi ett tal till varje båge. Detta tal kallas
Tentamen Datastrukturer D DAT 036/DIT960
Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Programmeringsteknik II
Programmeringteknik II Kursintroduktion http://www.it.uu.se/edu/course/homepage/prog2/vt18/ 2018-03-19 Programmeringsteknik II 2018-03-19 1 / 9 Lärare Carl Nettelblad (kursansvarig) Anna Eckerdal Biträdande
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
Sätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar
Grafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).
Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning ADT Map/Dictionary, hashtabeller TDDC9,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 7 september 208 Magnus Nielsen, IDA, Linköpings universitet. ADT Map/Dictionary.
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
TDDC74 Programmering, abstraktion och modellering. Tentamen
AID-nummer: Datum: 2011-01-11 1 Tekniska högskolan vid Linköpings universitet Institutionen för datavetenskap Anders Haraldsson TDDC74 Programmering, abstraktion och modellering Tentamen Tisdag 11 januari
Datastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
Algoritmer och datastrukturer
Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad
Rekursiva algoritmer sortering sökning mönstermatchning
Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
(6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: Hjälpmedel: Inga hjälpmedel
Data- och Programstrukturer Provmoment: Ladokkod: Tentamen ges för: Omtentamen NDP011 Systemarkitektprogrammet 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum:
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Tentamen: Programutveckling ht 2015
Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:
Föreläsning 13. Träd
Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Föreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00
1 ( 7) Uppgifter till tenta i 729G04 Programmering och diskret matematik. 17 december 2015, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier
Kurser inom våra tre ämnen
Div. information Fortsatta/vidare studier/examen Hur tänkte ni när ni valde utgång? Återkommer med undersökning Hur har tiden på programmet varit? Återkommer med undersökning Fest Compare fyller 10 år
Datastrukturer och algoritmer
Innehåll Föreläsning 1 Snabbrepetition Exempeltentamen ursvärdering Mina målsättningar Innehållsöversikt Rolig och viktig kurs Bli en bättre programmerare och inse att man blivit det änna till kända lösningar
EDAA01 Programmeringsteknik - fördjupningskurs
EDAA01 Programmeringsteknik - fördjupningskurs Läsperiod lp 1+2 (Ges även lp 3) 7.5 hp anna.axelsson@cs.lth.se sandra.nilsson@cs.lth.se http://cs.lth.se/edaa01ht Förkunskapskrav: Godkänd på obligatoriska
Introduktionsmöte Innehåll
Introduktionsmöte Innehåll Introduktion till kursen Kursens mål och innehåll Undervisning Datavetenskap (LTH) Introduktionsmöte ST 2019 1 / 14 EDAA01 Programmeringsteknik - fördjupningskurs Ingen sommarkurs
Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00
1 ( 7) Tenta (TEN3) i kursen 729G04 Programmering och diskret matematik 5 feb 2016, kl 14:00-18:00 Tillåtna hjälpmedel: Dator, penna, papper, linjal, suddgummi, godkänd(a) bok/böcker/kompendier (ej anteckningar,
Datastrukturer. föreläsning 9. Maps 1
Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande
Föreläsning 5: Dynamisk programmering
Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall
Föreläsning 13. Rekursion
Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
TDDC70/TDDC91 Datastrukturer och algoritmer Övningsuppgifter hösten 2013
TDDC70/TDDC91 Datastrukturer och algoritmer Övningsuppgifter hösten 2013 16 september 2013 Förord Detta är en samling av typiska problem rekommenderade för lektionerna i TDDC70/TDDC91 Datastrukturer och
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2014-04-25, 14:00 18:00. Författare: Nils Anders Danielsson. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION 120607 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition En ordbok: studentenshemspråk engelska Betygsgräns:
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Graphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
DAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
TDDC74 Programmering: Abstraktion och modellering Datortenta , kl 14-18
TDDC74 Programmering: Abstraktion och modellering Datortenta - 017-10-7, kl 14-18 Läs alla frågorna först och bestäm dig för i vilken ordning du vill lösa uppgifterna. Uppgifterna är inte nödvändigtvis
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 11 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
KTH, NADA, Vahid Mosavat. 1. Flervalsfrågor (5p)
KTH, NADA, Vahid Mosavat 2D1343, TENTAMEN I DATALOGI FÖR ELEKTRO Onsdagen den 31 mars 2004 kl 8-13 Maxpoäng: tenta+bonus = 50+7. Betygsgränser: 25 poäng ger trea, 35 ger fyra, 45 ger femma. Otydliga/svårlästa
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller
Översikt Linjär sökning Sökning Binär sökning Hashtabeller Programmering tillämpningar och datastrukturer 2 Linjär sökning Binärt sökträd Undersök ett element i taget tills du hittar det sökta Komplexitet
Lösningsförslag för tentamen i Datastrukturer (DAT036) från
Lösningsförslag för tentamen i Datastrukturer (DAT036) från 2011-12-16 Nils Anders Danielsson 1. Låt oss benämna indatalistan strängar. Vi kan börja med att beräkna varje strängs frekvens genom att använda
TDDB56 DALGOPT Algoritmer och Optimering Tentamen , 8 13
Linköpings Tekniska Högskola 00-08-0 Institutionen för Datavetenskap David Broman / Jan Maluszynski / Kaj Holmberg TDDB6 DALGOPT Algoritmer och Optimering Tentamen 00-08-0, 8 Examinator Jan Maluszynski
Föreläsningsanteckningar F6
Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en
Föreläsning 4: Giriga algoritmer. Giriga algoritmer
Föreläsning 4: Giriga algoritmer Giriga algoritmer Denna typ av algoritmer arbetar efter följande princip: Gör i varje situation det som är lokalt optimalt, d.v.s. bäst för stunden. Några exempel vi redan