Algoritmer och datastrukturer, föreläsning 11
|
|
- Leif Håkansson
- för 8 år sedan
- Visningar:
Transkript
1 lgoritmer och datastrukturer, föreläsning 11 enna föreläsning behandlar grafer. En graf har en mängd noder (vertex) och en mängd bågar (edge). Ett exempel är: E F G H Z enna graf har följande mängd av noder: {,,,, E, F, G, H, Z en har följande mängd bågar: {<, >, <, >, <, >, <, >, <, E>, <E, F>, <G, H>, <H, Z> Observera att bågarna är riktade! Vi definierar en nods utgrad som antal bågar som går ut från noden. En nods ingrad är antalet bågar in till noden. En väg från nod till nod är en mängd noder via vilka man kan gå från till via bågar. Observera att man får bara gå i pilens riktning på en båge. En cykel är en väg där första och sista noden är samma. En enkel cykel är en cykel där alla noder utom den sista och den första är olika. I en oriktad graf finns det ingen riktning på bågarna, man får gå åt båda hållen. Man kan se en oriktad graf som en riktad graf där det alltid finns en båge från till om det också finns en från till. En graf kallas sammanhängande om det finns en väg mellan alla noder. Grafen i figuren ovan är alltså inte sammanhängande. en har två komponenter. Ofta finns det något värde på bågarna i en graf. et kan till exempel representera längden av vägen mellan två noder eller kostnaden för att gå mellan två noder.
2 Representation av grafer en enklaste representationen är att använda en matris. ntag till exempel att vi har följande graf: en kan representeras av följande matris eller tabell: null null null 5 null 2 3 null null null 7 null null null En nackdel är att om grafen är stor så blir matrisen mycket stor. Ofta så finns det bara bågar mellan noder som ligger nära varandra och då kommer det oftast att stå null i tabellen. En annan representation är närhetslistan. en ser ut så här för grafen ovan: Fyrkanterna längst till vänster representerar noderna. I fyrkanterna finns data som hör hop med noden. e mer avlånga fyrkanterna representerar bågarna, här finns också data som hör ihop med bågen. e bågar som radas upp till vänster om en nod är de bågar som utgår från noden. Pilen som går från varje båge till en nod visar till vilken nod som bågen går. Representation i Java I Java använder man vanligtvis tre olika klasser för att representera grafer. Iden är samma som för träd och länkade listor, att man har en klass för trädet eller listan och en för noderna som i sin tur kan innehåller data. Vi använder en nodklass, en bågklass och en grafklass. En skiss av dem följer nedan.
3 Vi börjar med nodklassen. en kan se ut så här: public class Vertex{ //Nodklassen public Vertex nextvertex(){ public Edge firstedge(){ Om till exempel nod i grafen ovan anropar nextvertex så får man etc. Om anropar nextvertex() så blir resultatet null eftersom det inte finns någon nästa nod. Om nod anropar firstedge() så får man bågen som är strax till vänster om den. ågklassen kan ha föjande principiella utseende: public class Edge{ public Edge nextedge(){ public Vertex endpoint(){ Om man anropar nextedge() så får man den båge som finns till höger i närhetslistan. Om det inte finns någon så får man null. Om man anropar endpoint() så får man reda på vilken nod som bågen pekar på. Själva grafklassen kan se ut så här: public class igraph{ public Vertex firstvertex(){ public void insertvertex(vertex v){ public void insertedge(vertex v, Vertex w, Edge e){ Om man anropar firstvertex() så får man den första noden i grafen, i närhetsgrafen ovan är det nod. Exempel ntag att vi vill gå igenom alla noder i en graf g oberoende av bågar. å kan man göra så här: Vertex v = g.firstvertex(); while (g!= null){ //Gör något med noden här v = v.nextedge(); Observera att man inte alls följer bågarna i grafen när man gör så här. Exempel ntag att vi vill besöka alla grannarna till noden v. Så här kan man göra då: Edge e = v.firstedge(); Vertex w = e.endpoint(); //ehandla noden
4 tt gå igenom grafer Vi ska titta på två sätt att gå igenom (traversera) grafer genom att följa bågarna. I bägge fallen behövs det en startnod. en kan metoden firstvertex() i grafklassen förse oss med. en ena metoden kallas djupet först och den andra bredden först. jupet först Man använder rekursion för att gå igenom noderna. Man makerar noder som besökta när man har besökt dem, varje nod har ett booleskt attribut visited som används för detta. Man kan endast komma till noder som kan nås från startnoden. et betyder att om grafen har flera komponenter så kommer man bara att besöka alla noder i startnodens komponent. Metoden för detta placeras lämpligen i grafklassen. Koden kan se ut så här: public void depthfirst(vertex v){ v.visited = true; // Gör något med noden Edge e = v.firstedge(); Vertex w = e.endpoint(); if (!w.visited) depthfirst(w); redden först Här besöker man först alla startnodens grannar, sedan grannarnas grannar etc. Också här används ett boolskt attribut för att markera att en nod är besökt. Koden kan se ut så här: public void breadthfirst(vertex v){ v.visited = true; //Gör något med noden q.add(v); while (!q.isempty()){ Vertex x = q.remove; Edge e = x.firstedge(); Vertex w = endpoint(); if (!w.visited){ w.visited = true; //Gör något med noden; q.add(w); q kan vara t ex en lista i vilken man lagrar noder vars grannar man ska besöka. Man besöker bara de noder som kan nås från startnoden.
5 Läsavisningar i gamla boken vsnitt 1.1
Algoritmer och datastrukturer 2012, föreläsning 6
lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 15 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)
Datastrukturer. föreläsning 8. Lecture 6 1
atastrukturer föreläsning 8 Lecture 6 1 jupet-först sökning (S) och bredden-först sökning (S) Två metoder att genomsöka en graf; två grafiteratorer! Kan även användas för att avgöra om två noder är sammanbundna.
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Föreläsning 6 Datastrukturer (DAT037)
Föreläsning 6 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-17 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-01-10 1. Båda looparna upprepas n gånger. s.pop() tar O(1), eventuellt amorterat. t.add() tar O(log i) för i:te iterationen av första loopen.
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Föreläsning 2. Länkad lista och iterator
Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF
Föreläsning 1. Introduktion och sökning i graf. Vad är en algoritm?
Föreläsning 1. Introduktion och sökning i graf Vad är en algoritm? Först: Vad är ett problem? Består av indata och ett mål. Indata: [En beskrivning av en struktur.] Mål: [Kan vara Ja/Nej, ett tal eller
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-13 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
DAI2 (TIDAL) + I2 (TKIEK)
TNTMN KURSNMN PROGRM: KURSTKNING XMINTOR lgoritmer och datastrukturer I2 (TIL) + I2 (TKIK) 2017/2018, lp 4 LT75 Uno Holmer TI ÖR TNTMN redagen den 1/8 2018, 08.0-12.0 HJÄLPML NSVRIG LÄRR atastrukturer
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Föreläsning 4 Innehåll. Abstrakta datatypen lista. Implementering av listor. Abstrakt datatypen lista. Abstrakt datatyp
Föreläsning 4 Innehåll Abstrakta datatypen lista Definition Abstrakta datatypen lista egen implementering Datastrukturen enkellänkad lista Nästlade klasser statiska nästlade klasser inre klasser Listklasser
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-20 Idag Grafer: Terminologi. Datastrukturer. Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. (Vi får
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Det här är inte originaltesen. Uppgift 6 var felaktigt formulerad, och har rättats till. Datum och tid för tentamen: 2011-12-16, 8:30 12:30. Ansvarig: Nils Anders Danielsson.
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna
Tentamen, EDA501/EDAA20 Programmering M MD W BK L
LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, EDA501/EDAA20 Programmering M MD W BK L 2017 05 31, 8.00 13.00 Anvisningar: Preliminärt ger uppgifterna 9 + 12 + 10 + 9 = 40 poäng.
Grafer, traversering. Koffman & Wolfgang kapitel 10, avsnitt 4
Grafer, traversering Koffman & Wolfgang kapitel 1, avsnitt 4 1 Traversering av grafer De flesta grafalgoritmer innebär att besöka varje nod i någon systematisk ordning precis som med träd så finns det
Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt namn och personnummer på varje blad
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-13 Idag Mer om grafer: Topologisk sortering. Kortaste vägen. Bredden först-sökning. Dijkstras algoritm. Floyd-Warshall. Topologisk sortering
Föreläsning 2. Länkad lista och iterator
Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF
Föreläsning 5: Grafer Del 1
2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första
Programmering i C++ EDAF30 Dynamiska datastrukturer. EDAF30 (Föreläsning 11) HT / 34
Programmering i C++ EDAF30 Dynamiska datastrukturer EDAF30 (Föreläsning 11) HT 2014 1 / 34 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd Säkrare minneshantering (shared_ptr och unique_ptr)
Föreläsning 10. Grafer, Dijkstra och Prim
Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Broarna i Königsberg, Euler, 17 Grafer
Grafer, allmänt. Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges).
Grafer, allmänt Allmänt Med datastrukturen graf menas vanligen: en mängd av noder (vertices) och en mängd av bågar (edges). En graf kan vara riktad (directed) eller oriktad (undirected). En graf kan vara
Föreläsning 6. Rekursion och backtracking
Föreläsning 6 Rekursion och backtracking Föreläsning 6 Bredden först med hjälp av kö Lista rekursivt Tornet i Hanoi Backtracking Hissen i lustiga huset Huset har n antal våningar (bottenvåningen som räknas
FÖRELÄSNING 11 DATALOGI I
Föreläsning I07 FÖRELÄSNING DATALOGI I Grafer Beatrice Åkerblom beatrice@dsv.su.se Institutionen för Data- och Systemvetenskap SU/KTH Föreläsning I07 Läsanvisningar Michael Main Data Structures & Other
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Datastrukturer och Algoritmer D0041D
Luleå Tekniska Universitet 19 mars 2014 Laborationsrapport Laboration 3 Datastrukturer och Algoritmer D0041D Primms Algoritm Namn E-mail Magnus Björk magbjr-3@ltu.student.se Handledare Felix Hansson Primms
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2013-12-16, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och
Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Föreläsningsanteckningar F6
Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann
Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag)
Tentamen Datastrukturer D DAT 035/INN960 (med mycket kortfattade lösningsförslag) 21 december 2007 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng
DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
Näst nästa gång: Nästa gång: mer grafer (kap 10) Grafer 1 1. ! uppspännande träd. ! minimala uppspännande träd. ! Prims algoritm. !
F9 Läsanvisning: kap 10 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö
Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram
Föreläsning 13. Rekursion
Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)
Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2014-04-25, 14:00 18:00. Författare: Nils Anders Danielsson. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
TENTAMEN I DATAVETENSKAP
Umeå Universitet Datavetenskap Marie Nordström Thomas Johansson Jürgen Börstler 030124 TENTAMEN I DATAVETENSKAP PROGRAMMERINGSMETODIK OCH PROGRAMMERING I JAVA, 5P. (TDBA63) Datum : 030124 Tid : 9-15 Hjälpmedel
Kapitel 9: Grafalgoritmer
Kapitel 9: Grafalgoritmer En graf G = (V, E) karakteriseras av två mängder en ändlig icke-tom mängd V av noder (vertex) en mängd E av bågar (edges eller arcs) varje båge är ett par (v, w), där v, w är
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Grafer. Objektorienterad modellering och design (EDAF25) Föreläsning 2. Grafer. Grafer Traversering Djupet först. Agenda. Grafer
Objektorienterad modellering och design (EF25) Föreläsning 2 Traversering genda jupetförsttraversering Inför Lab 2 Objektorienterad modellering Övning modellering Introduktion till designprinciper tt jobba
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2012-11-05 Repetition Förra gången: Listor, stackar, köer. Länkade listor, pekarjonglering. Idag: Cirkulära arrayer. Dynamiska arrayer. Amorterad
Graphs (chapter 14) 1
Graphs (chapter ) Terminologi En graf är en datastruktur som består av en mängd noder (vertices) och en mängd bågar (edges) en båge är ett par (a, b) av två noder en båge kan vara cyklisk peka på sig själv
F11 - Rekursion. ID1004 Objektorienterad programmering Fredrik Kilander
F11 - Rekursion ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Rekursion Rekursion är en programmeringsteknik En metod anropar sig själv public String reverse (String s) { if (s.length()
Tentamen Datastrukturer (DAT036)
Tentamen Datastrukturer (DAT036) Datum och tid för tentamen: 2012-08-24, 8:30 12:30. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 9:30 och ca
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
(6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte
Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara
Kaliningrad) låg vid bägge sidor av floden Pregel samt på
Grunder i matematik och logik (2018) Grafteori Marco Kuhlmann Grafteori är det område inom matematiken som undersöker egenskaper hos grafer. Inom grafteorin har begreppet graf en annan betydelse än graf
Tentamen i Objektorienterad modellering och design Helsingborg
Lunds Tekniska Högskola Datavetenskap Emelie Engström Tentamen EDAF25 2016 10-26, 08:00 13:00 Tentamen i Objektorienterad modellering och design Helsingborg Tentamen består av en teoridel om totalt 5 poäng
Föreläsning 13. Träd
Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.
TENTAMEN: Algoritmer och datastrukturer. Läs detta!
1 (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
729G04 - Diskret matematik. Lektion 4
729G04 - Diskret matematik. Lektion 4 1 Lösningsförslag 1.1 Vägar, stigar och annat 1. Vi ges den oriktade grafen G=(V,E), V = {a, b, c, d, f, g, h, i, j}, E = {{a, b}, {b, c}, {a, c}, {f, g}, {c, d},
Föreläsning REPETITION & EXTENTA
Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder
Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4
Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara
Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två
Binära träd Inom datalogin brukar man använda träd för att beskriva vissa typer av problem. Om man begränsar sig till träd där varje nod förgrenar sig högst två gånger, talar man om binära träd. Sådana
TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET
UMEÅ UNIVERSITET Datavetenskap 010824 TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET Datum : 010824 Tid : 9-15 Hjälpmedel : Inga Antal uppgifter : 7 Totalpoäng : 40 (halva poängtalet krävs normalt
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 6 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 1
Optimering Kruskal s algoritm Prim-Jarník s algoritm
Optimering Kruskal s Prim-Jarník s 0.7 1.3 0.5 0.3 2.1 0.7 1.3 0.5 0.3 2.1 Viktad graf raf där varje kant har en vikt Vikterna kan motsvara Kostnad Avstånd Tidsåtgång ur hittar man kortaste vägen från
Grafer MST Top. sortering Starkt samm. komponenter Kortaste avstånd. Grafalgoritmer 1. Douglas Wikström KTH Stockholm
Grafalgoritmer 1 Douglas Wikström KTH Stockholm popup-help@csc.kth.se Oriktade och riktade grafer Definition. En oriktad graf består av en mängd noder V och en mängd kanter E, där en kant är ett oordnat
Föreläsning 3 Datastrukturer (DAT037)
Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina
Objektorienterad programmering E. Back to Basics. En annan version av printtable. Ett enkelt exempel. Föreläsning 10
Objektorienterad programmering E Föreläsning 10 Rekursion Länkade datastrukturer Back to Basics Exekvera programmet för hand! public class Param { public static int f(int x) { return x+1; public static
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Föreläsning 6. Rekursion och backtracking
Föreläsning 6 Rekursion och backtracking Föreläsning 6 Bredden först med hjälp av kö Lista rekursivt Tornet i Hanoi Backtracking Läsanvisningar och uppgifter Hissen i lustiga huset Huset har n antal våningar
träd dag graf båge och vikt Grafer definitioner och terminologi
F9 Läsanvisning: kap 0 + dessa OH (Obs att OH bilderna tar upp mer än boken) intro till grafer (bara handskrivet och tavla) definitioner och terminologi representationer djupet först bredden först Nästa
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Länkade strukturer, parametriserade typer och undantag
Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Objektorienterad modellering och design (EDAF25) Föreläsning 5. Repetition Grafer Traversering bredden först med kö
Objektorienterad modellering och design (EDAF25) Föreläsning 5 Repetition Grafer Traversering bredden först med kö Agenda Repetition (Grafer, Designmönster, Designprinciper) Designmönster (Null Object,
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning