Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
|
|
- Bernt Henriksson
- för 9 år sedan
- Visningar:
Transkript
1 Programmering för Språkteknologer II Markus Saers Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer för att använda associativa datastrukturer Associativa datastrukturer Låter oss associera godtyckliga nycklar med godtyckliga värden Vektor: associerar heltal med godtyckliga värden Behöver inte vara tät Vektorer: måste ha plats för alla nycklar från 0 till den högsta Nycklar måste vara unika En nyckel får inte associeras med flera värden Utgör en mängd Vektorer: mängden giltiga index Associativa datastrukturer Två vanliga implementationer Hashtabeller (Jätte) snabba O(1) Osorterade Nästan täta Sökträd Snabba O(logn) Sorterade Helt täta Antag att vi har en vektor med sorterade element [ ] Vi vill finna ett givet element i vektorn Titta på det mittersta elementet Avgör om det sökta elementet är exakt lika, större eller mindre < Avgör om vi är färdiga (lika) eller i vilken halva elementet finns (< vänster, > höger)
2 !=!= < != != > ==
3 Jämför med Jämför med Jämför med / Jämför med / 300 Jämför med / / 0 / 8 3
4 : beslutsträd : beslutsträd Vid varje nod: Har vi kommit till det tal vi sökte? Om ja: vi är klara! Om nej: är det sökta talet större eller mindre? Om större: leta i noden till höger Om mindre: leta i noden till vänster Om vi ska vidare från en nod finns två val Beslutsträd = binärt sökträd Sökträd I praktiken binärt sökträd Konkret modellering av beslutsträdet från en binär sökning : algoritm applicerad på en vektor Binära sökträd: datastruktur som direkt modellerar binär sökning Binärt sökträd Består av noder Varje nod har En nyckel Ett värde Ett vänsterbarn som är rot i trädet med alla noder vars nycklar är mindre än nyckeln Ett högerbarn som är rot i trädet med alla noder var nycklar är större än nyckeln Binära sökträd Binära sökträd värde nyckel v. barn h. barn
5 Egenskaper Obalanserat binärt sökträd Hur många jämförelser behöver vi göra för att hitta en nyckel? Höjden på trädet Ett balanserat träd är log n högt: O(log n) log() = 3,17 = 4 Antal noder: 7 Höjd: 7 Söktid: O(n) 10 0 Balanserade binära sökträd Varje gång en nod läggs in kontrollerar trädet att det är i tillräcklig balans Olika metoder Röd-svarta träd AVL-träd Påverkar inte tidskomplexiteten! Söker på nervägen, balanserar på tillbakavägen Däremot den faktiska tiden med en faktor Balanserade binära sökträd Sökning: O(log n) Insättning: O(log n) Borttagning: O(log n) Traversering: O(n) Genomlöpning som besöker varje nod exakt en gång Ny sorteringsalgoritm: TreeSort Lägg in alla värdena som nycklar i ett balanserat binärt sökträd Antal nycklar: n Tid per insättning: O(log n) Total tid: O(n log n) I praktiken långsammare än MergeSort Objekt som nycklar i Tree Trädklasserna behöver något sätt att avgöra vilken ordning nycklarna kommer i Naturlig ordning Jämförelseklass
6 Naturlig ordning Alla klasser som implementerar Comparable<T> på sig själva har en naturlig ordning Innebär att metoden int compareto(t t) implementeras Ger 0 om objekten är lika Ger < 0 om objektet är mindre än t Ger > 0 om objektet är större än t För heltal: return value t.value; Naturlig = given av klassen Exempel: Point public class Point implements Comparable<Point>{ private int x; private int y; public int compareto(point p) { if (x == p.x) { return y p.y; else { return x p.x; Exempel: Person public class Person implements Comparable<Person> { private String firstname; private String lastname; public int compareto(person p) { if (firstname.equals(p.firstname)) { return lastname.compareto(p.lastname); else { return firstname.compareto(p.firstname); Olika ordningar Nu bestämde vi att personer ordnas efter hur deras namn läsas ut Vad göra om vi vill bygga en telefonkatalog? Ordnad i fösta hand på efternamn Jämförelseobjekt! Implementerar Comparator<T> Comparator<T> Finns ijava.util (måste importeras) Måste implementera metoden int compare(t a, T b) Ska vara som a.compareto(b) Fast enligt den ordning som klassen representerar Exempel: Person public class Person implements Comparable<Person> { private String firstname; private String lastname; public int compareto(person p) { if (firstname.equals(p.firstname)) { return lastname.compareto(p.lastname); else { return firstname.compareto(p.firstname); public String getfirstname() { return firstname; public String getlastname() { return lastname; 6
7 Personjämförare i telefonkatalogordning import java.util.*; public class PhoneBookPersonComparator implements Coparator<Person> { public int compare(person a, Person b) { if (a.getlastname().equals(b.getlastname()) { return a.getfirstname().compareto(b.getfirstname()); else { return a.getlastname().compareto(b.getlastname()); Användning public class Test { public static void main(string[] args) { TreeSet<Person> people = new TreeSet<Person>(); TreeMap<Person, Integer> phonebook = new TreeMap<Person, Integer>( new PhoneBookPersonComparator() ); // Lägg in personer i people och phonebook for (Person p : people) { // Ordnade efter förnamn sedan efternamn for (Person p : phonebook.keyset()) { // Ordnade efter efternamn sedan förnamn Frågor? 7
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Programmering för språkteknologer II, HT2014. evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Hashtabeller
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Föreläsning 10. ADT:er och datastrukturer
Föreläsning 10 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad
Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga)
Grundläggande programmering med C# Provmoment: Ladokkod: Tentamen ges för: 7,5 högskolepoäng TEN1 NGC011 Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga) (Ifylles av student) (Ifylles av student)
Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet
Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
Algoritmer. Två gränssnitt
Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Föreläsning REPETITION & EXTENTA
Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder
TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P
UME UNIVERSITET Datavetenskap 981212 TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P Datum : 981212 Tid : 9-15 HjŠlpmedel : Inga Antal uppgifter : 9 TotalpoŠng : 60 (halva pošngtalet kršvs normalt fšr
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Tentamen Datastrukturer D DAT 036/DIT960
Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.
Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills
Laboration 13, Arrayer och objekt
Laboration 13, Arrayer och objekt Avsikten med denna laboration är att du ska träna på att använda arrayer. Skapa paketet laboration13 i ditt laborationsprojekt innan du fortsätter med laborationen. Uppgift
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Föreläsning 11 Innehåll
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:
Tentamen Datastrukturer (DAT037)
Tentamen Datastrukturer (DAT07) Datum och tid för tentamen: 2016-01-09, 14:00 18:00. Ansvarig: Nils Anders Danielsson. Nås på 0700 620 602 eller anknytning 1680. Besöker tentamenssalarna ca 15:00 och ca
Föreläsning 9 Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT07) Fredrik Lindblad 27 november 207 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/20/course/dat07 Innehåll 2
Lösningsförslag till exempeltenta 1
Lösningsförslag till exempeltenta 1 1 1. Beskriv hur binärsökning fungerar. Beskriv dess pseudokod och förklara så klart som möjligt hur den fungerar. 2 Uppgift 1 - Lösning Huvudidé: - Titta på datan i
Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2
Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 HT 2017 1 / 38 Sortering Varför
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
Programmering för språkteknologer II, HT2011. Rum
Programmering för språkteknologer II, HT2011 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv11/pst2/ Idag - Hashtabeller - Flerdimensionella arrayer (2D) 2 Repetition -
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Föreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Instuderingsfrågor, del D
Uppgift 1. Instuderingsfrågor, del D Objektorienterad programmering, Z1 I vilka av nedanstående problem behöver man använda sig av fält för att få en elegant lösning? I vilka problem är det är det onödigt/olämpligt
Föreläsning 11 Innehåll. Diskutera. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Exempel på listor (klassen ArrayList). Ett exempel med fält. Avbildning är en speciell typ av lista HashMap.
Institutionen för Datavetenskap Göteborgs universitet HT2008 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Innehåll Föreläsning 4 Exempel på listor (klassen ArrayList). Ett exempel med fält.
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008
Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008 Christian 27 maj 2008 Uppgift 1 Flera av dem jag talade med efter tentan hade blivit förskräckta när
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 5 ADT Map/Dictionary, hashtabeller TDDI16: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 16 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 5.1 Innehåll Innehåll
Interfacen Set och Map, hashtabeller
Föreläsning 0 Innehåll Hashtabeller implementering, effektivitet Interfacen Set och Map ijava Interfacet Comparator Undervisningsmoment: föreläsning 0, övningsuppgifter 0-, lab 5 och 6 Avsnitt i läroboken:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Saker du ska kunna Föreläsning 13 & 14
Saker du ska kunna Föreläsning 13 & 14 LISTOR Ta bort element från en vektor Både sorterad och osorterad Söka upp element i en vektor Linjärsökning räcker (jag har även visat binärsökning) Registrering
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Föreläsning 13 och 14: Binära träd
Föreläsning 13 och 14: Binära träd o Binärträd och allmänna träd o Rekursiva tankar för binärträd o Binära sökträd Binärträd och allmänna träd Stack och kö är två viktiga datastrukturer man kan bygga av
Tentamen kl Uppgift 4. Uppgift 5
2D344 Grundläggande Datalogi för F Tentamen 2003-03-0 kl 4.00 9.00 Inga hjälpmedel. Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ
Objektorienterad programmering i Java
Objektorienterad programmering i Java Föreläsning 4 Täcker i stort sett kapitel 6 i kursboken Java Software Solutions 1 Läsanvisningar Den här föreläsningen är uppbyggd som en fortsättning av exemplet
Objektorienterad programmering E. Back to Basics. En annan version av printtable. Ett enkelt exempel. Föreläsning 10
Objektorienterad programmering E Föreläsning 10 Rekursion Länkade datastrukturer Back to Basics Exekvera programmet för hand! public class Param { public static int f(int x) { return x+1; public static
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2016-03-21 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Exempeltenta GruDat 2002/2003
Exempeltenta GruDat 2002/2003 Endast ett svarsalternativ på varje fråga är korrekt. Felaktigt svar eller felaktigt antal ikryssade svarsalternativ ger noll poäng på uppgiften. Obs: Den riktiga tentan kommer
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,
Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4
Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Föreläsning 14 Innehåll
Föreläsning 14 Innehåll Abstrakta datatyper, datastrukturer Att jämföra objekt övriga moment i kursen Om tentamen Skriftlig tentamen både programmeringsuppgifter och teoriuppgifter Hitta fel i fingerade
Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering
Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer.
Tentamen i Objektorienterad programmering
CHALMERS TEKNISKA HÖGSKOLA Datavetenskap TDA547 Tentamen i Objektorienterad programmering Lördagen 12 mars 2011, 8.30 12.30. Jourhavande lärare: Björn von Sydow, tel 0762/981014. Inga hjälpmedel. Lösningar
Övning 4. Hashning, sortering, prioritetskö, bästaförstsökning. Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen?
Per Sedholm DD1320 (tilda12) 2012-09-20 Övning 4 Hashning, sortering, prioritetskö, bästaförstsökning 1. Perfekt hashfunktion Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen? Vi
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Heapar Implementering av prioritetskö med heap Klassen PriorityQueue i java.util Programexempel LPT-algoritmen
Sätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
Tentamen, EDA501/EDAA20 Programmering M MD W BK L
LUNDS TEKNISKA HÖGSKOLA 1(6) Institutionen för datavetenskap Tentamen, EDA501/EDAA20 Programmering M MD W BK L 2017 05 31, 8.00 13.00 Anvisningar: Preliminärt ger uppgifterna 9 + 12 + 10 + 9 = 40 poäng.
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
4 13 / %.; 8 </" '': " / //&' " " ' * TelefonKostnad +,-%&. #!" $% " &' . > / ' 5 /' * 13/ &' static Math 1+" &'/ % 12 "" static "' * 1 /") %& &
TelefonKostnad static Math static $ & )&* +,-&. 0 +& + & 3 356+573 ) & & 6 3 3 & 3 * 6 3.:; < = 3 = 6 ; < : & >?.;,;@.A@;0,0,? @B0 C,0 > *. > 5 C D & D 5 * &! ; 66C! * C, 0 E,&! 0 F,G0 >: = = C 3 & HI
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning
EDAA20 Föreläsning Klassen ArrayList. Viktiga operationer på ArrayList. Generisk klass
EDAA20 Föreläsning 11-12 Klassen ArrayList Klassen ArrayList Skriva program som läser data från en textfil och skriver data till en textfil Repetition inför delmålskontroll 2 är en standardklass (i paketet
Föreläsning 4: Kombinatorisk sökning
DD2458, Problemlösning och programmering under press Föreläsning 4: Kombinatorisk sökning Datum: 2009-09-25 Skribent(er): Kristina Nylander, Dennis Ekblom, Marcus Öman Föreläsare: Fredrik Niemelä 1 Introduktion
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Grundläggande programmering med C# 7,5 högskolepoäng
Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: TEN1 Ladokkod: NGC011 Tentamen ges för: Omtentamen DE13, IMIT13 och SYST13 samt öppen för alla (Ifylles av student) (Ifylles av student)
Övningsuppgifter #11, Programkonstruktion och datastrukturer
Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller
Tänk på följande: Det finns en referensbok (Java) hos tentavakten som du får gå fram och läsa men inte ta tillbaka till bänken.
Tentamen Programmeringsteknik I 2015-01-10 Skrivtid: 8.00 13.00 Hjälpmedel: Java-bok Tänk på följande: Det finns en referensbok (Java) hos tentavakten som du får gå fram och läsa men inte ta tillbaka till
Datastrukturer som passar för sökning. Föreläsning 10 Innehåll. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet alanserade binära sökträd VL-träd Datastrukturer som passar för sökning ntag att vi i ett
Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller
Översikt Linjär sökning Sökning Binär sökning Hashtabeller Programmering tillämpningar och datastrukturer 2 Linjär sökning Binärt sökträd Undersök ett element i taget tills du hittar det sökta Komplexitet
Tentamen. 2D4135 vt 2005 Objektorienterad programmering, design och analys med Java Lördagen den 28 maj 2005 kl 9.00 14.
Tentamen 2D4135 vt 2005 Objektorienterad programmering, design och analys med Java Lördagen den 28 maj 2005 kl 9.00 14.00, sal E33 Tentan har en teoridel och en problemdel. På teoridelen är inga hjälpmedel
Föreläsning 3-4 Innehåll
Föreläsning 3-4 Innehåll Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer Datavetenskap (LTH) Föreläsning 3-4 HT 2017 1 / 36 Diskutera Vad gör programmet programmet? Föreslå
SORTERING OCH SÖKNING
Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm
Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation
Innehåll Föreläsning 11 Trie Sökträd Trie och Sökträd 356 357 Trie Ytterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat träd där barnen till
Fredag 10 juni 2016 kl 8 12
KTH CSC, Alexander Baltatzis DD1320/1321 Lösningsförslag Fredag 10 juni 2016 kl 8 12 Hjälpmedel: En algoritmbok (ej pythonkramaren) och ditt eget formelblad. För betyg E krävs att alla E-uppgifter är godkända,
Grundläggande datalogi - Övning 4
Grundläggande datalogi - Övning 4 Björn Terelius November 21, 2008 Definitioner Olika mått på komplexitet Definition En funktion f sägs vara O(g) om det existerar konstanter c, N så att f (n) < cg(n) för
Datastrukturer som passar för sökning. Föreläsning 11 Innehåll. Binära sökträd Definition. Inordertraversering av binära sökträd
Föreläsning Innehåll inära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, VL-träd Jämföra objekt interfacet omparable Interfacet omparator
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 VT 2018 1 / 40 Sortering Varför
Kungliga Tekniska Högskolan Ämneskod 2D4134 Nada Tentamensdag 2001 - maj - 19 Tentamen i Objektorientering och Java Skrivtid 5 h
Kungliga Tekniska Högskolan Ämneskod 2D4134 Nada Tentamensdag 2001 - maj - 19 Tentamen i Objektorientering och Java Skrivtid 5 h Antalet uppgifter : 2 (20p + 20p = 40 p) ) Lärare, jourhavande lärare :
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum, tid och plats för tentamen: 2017-08-17, 8:30 12:30, M. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 9:30 och ca 11:00.
DELPROV 1 I DATAVETENSKAP
Umeå Universitet Datavetenskap Marie Nordström 070502 DELPROV 1 I DATAVETENSKAP Uppgift (poäng) 1 () 2 () 3 () 4 () 5 () 6 () Summa (xx) Inlämnad Poäng Kurs : Datum : 070502 Namn (texta) : Personnummer
Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.
Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något
Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER
Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Från laboration 3 till 4 I laboration 3 har du implementerat klasser implementerat metoder i klasserna I laboration 4 kommer du att implementera
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Inlämningsuppgiften. Föreläsning 9 Innehåll. Träd. Datastrukturer i kursen
Föreläsning 9 Innehåll Inlämningsuppgiften De föreläsningar som inlämningsuppgiften bygger på är nu klara. Det är alltså dags att börja arbeta med inlämningsuppgiften. Träd, speciellt binära träd egenskaper
Tentamen OOP 2015-03-14
Tentamen OOP 2015-03-14 Anvisningar Fråga 1 och 2 besvaras på det särskilt utdelade formuläret. Du får gärna skriva på bägge sidorna av svarsbladen, men påbörja varje uppgift på ett nytt blad. Vid inlämning
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Datastrukturer. föreläsning 6. Maps 1
Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Lägre gräns för sortering Count sort,
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?
Länkade strukturer, parametriserade typer och undantag
Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer
F9 - Polymorfism. ID1004 Objektorienterad programmering Fredrik Kilander
F9 - Polymorfism ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Polymorfism - flerformighet Vi vet vad metoden heter (signaturen) Men vi vet inte vid anropet exakt vilken metod som faktiskt
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
Vad handlar kursen om? Algoritmer och datastrukturer. Vad handlar kursen om? Vad handlar kursen om?
Algoritmer och datastrukturer Allmänt om kursen Kort javagrund repetition - Klasser, metoder, objekt och referensvariabler, - Hierarkiska klass strukturer - Arrayer och arrayer av objekt - Collection ramverket