Beräkningsvetenskap introduktion. Beräkningsvetenskap I
|
|
- Ida Eriksson
- för 6 år sedan
- Visningar:
Transkript
1 Beräkningsvetenskap introduktion Beräkningsvetenskap I
2 Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon, noggrannhet, noggrannhetsordning, stabil- resp ickestabil algoritm, diskretiseringsfel (trunkeringsfel), iteration, kondition och konditionstal utföra enklare analys av beräkningsproblem och algoritmer för att besvara frågeställningar kring begreppen i föregående punkt
3 Kursens mål, forts översiktligt förklara idén bakom de algoritmer som behandlas i kursen och visa hur de kan användas för lösning av tillämpningsproblem Redogöra för skillnaden i metodik vid datorberäkningar i jämförelse med analytisk lösning och de effekter som flyttalsrepresentation och diskretisering medför
4 Kursens mål, forts Använda grundläggande programmeringsstrukturer (if, while, for) i algoritmer och i programmeringskod vid problemlösning Givet ett mindre beräkningsproblem, strukturera och dela upp i underproblem, formulera algoritm för lösning av problemet, samt implementera i ett programmeringsspråk Redogöra för hur parametrar överförs till funktioner samt skillnaden mellan globala och lokala variabler i program Förstå enkel programmeringskod och skriva egna välstrukturerade mindre beräkningsprogram i form av kommandofiler och egna funktioner i Matlab
5 Mål, forts I en mindre rapport förklara och sammanfatta lösningsmetoder och resultat på ett överskådligt sätt
6 Kursens upplägg/struktur Fem olika block Varje block, utom inledning- och programmeringsblocken, har strukturen Datorlab => Föreläsning(ar) => Workout => Problemlösningspass + miniprojekt => Återkopplingsföreläsning Alla delar hänger ihop om man t ex missat labben förstår man föreläsningen sämre Alla delar tillsammans ger fullständig förståelse av blocket
7 Kursens upplägg/struktur Citat från tidigare kursvärderingar: Det är framförallt sampelet mellan de olika formerna som varit bra. Att först ha laboration, sen föreläsning, workout och sist problemlösning gav förståelse och väl behövlig repetition. När man var klar med ett block kunde man det väl. Jag tycker det hänger ihop bra. Först får man testa praktiskt utan att förstå och sen får man förklarat för sig och till sist så faller teorin på plats när man gör workouten.
8
9 Laborationer Teori
10 Laborationer Teori Simuleringar/datorberäkningar
11 Beräkning av satellitbanor Simulering av luftflöde kring flygplan Simulerad krocktest av bilar Hållfasthetsberäkningar Väderleksprognoser Simulering av förbränning, t ex i motor Simulering av föroreningstransport i naturen Bildanalys ( förbättra bilder, hitta mönster) Bestämning av molekylstrukturer hos proteiner Molekyldynamik och mycket mycket mer
12
13 Partitionering vid beräkning på parallelldator
14 Partitionering vid beräkning på parallelldator Simulering av blixtnedslag i SAAB 2000
15 Partitionering vid beräkning på parallelldator Simulering av blixtnedslag i SAAB 2000 Krocksimulering
16 Partitionering vid beräkning på parallelldator Simulering av blixtnedslag i SAAB 2000 Krocksimulering Simulering av proteinveckning
17 Molekyldynamik Här: studier av utbytesmekanismer och utbyteshastigheter mellan vattenmolekyler runt en litiumjon (i vatten)
18 Veckning av HIV-virus
19 Veckning av HIV-virus
20 Simulering av bålgetings flygförmåga
21 Simulering av bålgetings flygförmåga
22 Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller
23 Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt.
24 Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder.
25 Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder. Resultat: Ger approximativ lösning.
26 verklighet Lösning modeller Numeriska metoder
27 verklighet Lösning modeller Numeriska metoder
28 verklighet Lösning modeller Numeriska metoder
29 verklighet Lösning modeller Numeriska metoder
30 verklighet Lösning modeller Numeriska metoder Datorprogram
31 verklighet Lösning modeller Numeriska metoder Datorprogram
32
33 Verkligheten
34 Verkligheten Matematisk modell
35 Verkligheten Matematisk modell Numerisk metod
36 Verkligheten Matematisk modell Numerisk metod Datorprogram
37 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning
38 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning OK?
39 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning OK? Ja
40 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Ja
41 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Ja
42 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Ja
43 Verkligheten Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Ja
44 Verkligheten Felkällor Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Ja
45 Verkligheten Felkällor Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Idealisering, förenkling Ja
46 Verkligheten Felkällor Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Idealisering, förenkling Diskretisering, trunkering Ja
47 Verkligheten Felkällor Matematisk modell Numerisk metod Datorprogram Lösning Nej OK? Idealisering, förenkling Diskretisering, trunkering Avrundning, noggrannhet i indata Ja
48 Verkligheten Felkällor Matematisk modell Nej Numerisk metod Datorprogram Lösning OK? Ja Idealisering, förenkling Diskretisering, trunkering Avrundning, noggrannhet i indata Slutresultatet en approximation, uppnår endast en viss noggrannhet
49 Ett (trivialt) exempel Beräkna arean på jorden med den matematiska modellen A=4πr 2 Innehåller flera approximationer och fel: Jorden approximeras av en sfär idealisering av jordens verkliga yta Värdet på radien baseras på empiriska mätningar och tidigare beräkningar Värdet på π kräver trunkering (avhuggning) av oändlig decimalutveckling Indata och resultat avrundas av datorn
50 Ett mer realistiskt exempel Verkligheten HIV-viruset bildar mutanter. Immunsystemet bildar en specifik lymfocyt för viruset och mutanterna. Dessutom finns en immunrespons för hela immunsystemet. Beräkna populationstillväxten för virus, lymfocyten och immunrespons med avseende på tid.
51 Matematisk modell v 1 = population av HIV-virus v 2 = population av 1:a mutanten x 1 = population av lymfocyt mot viruset x 2 = population av lymfocyt mot 1:a mutant z = immunrespons
52 Matematisk modell Modellen är en förenkling av verkligheten Kan lägga in fler mutanter för att göra den mer realistisk blir då mer komplicerad Svårt bestämma parametrarna a, b, c,.... Kan variera med olika personer. Görs ofta empiriskt. Svårt eller omöjligt att göra en modell som helt överensstämmer med verkligheten Slutsats: Modellen en approximation av verkligheten!
53 Numerisk metod Problem! Kan ej lösas med vanliga matematiska (analytiska) metoder. Vi använder istället en numerisk metod. Numeriska metoder bygger i detta fall på diskretisering, dvs kontinuerliga intervall ersätts med diskreta punkter. Beräkning sker endast i dessa punkter medför diskretiseringsfel Metoderna har olika egenskaper och kan vara bra ur en synvinkel men dåliga ur en annan. Exempelvis kan en viss metod vara effektiv (snabb), men i vissa lägen vara instabil
54 Datorprogram Implementera metoden, dvs skriv program för den numeriska metoden (C++, Java, MATLAB,...) eller Använd befintlig programvara, t ex MATLAB Indata Ofta till krävs programmet, en kombination t ex a, av b, båda! c,..., baseras vanligen på mätningar och är inte exakta Krävs ett initialtillstånd, t ex antal HIV-virus vid tiden t=0. Detta mäts ej exakt utan innehåller fel Datorn avrundar alla beräkningar
55 Lösning Lösningen OK? Tolka resultat Tillräckligt effektivt och snabbt? Är felet tillräckligt litet?
56 Beräkningsvetenskapens sammanhang escience/ e-vetenskap Computational Science and Engineering/ beräkningsfysik, beräkningskemi,... Scientific Computing/ beräkningsvetenskap
57 Datavetenskap Numeriska metoder Datorprogram Matematik Tillämpningsämnen
58 Frågeställningar inom beräkningsvetenskap Exekveringstid? Minnesutnyttjande? Vilken typ av dator? Numeriska metoder Datorprogram Noggrannhet? Stabilitet? Kondition?
59 Ämnets historia 1945 Den moderna datorn 1960-tal Professurer i numerisk analys Ett tvärvetenskapligt område tar form 2000-tal Begreppet beräkningsvetenskap etableras
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi
Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)
Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg
Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information
Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi
Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska
Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi. Jarmo Rantakokko Josefin Ahlkrona Karl Ljungkvist
Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Karl Ljungkvist Vårterminen 2012 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska modeller Talrepresentation
Beräkningsvetenskap I
Beräkningsvetenskap I Jarmo Rantakokko Magnus Grandin Emil Kieri Vårterminen 2014 Varför beräkningsvetenskap? Idag spelar numeriska simuleringar med datorer, baserade på matematiska och statistiska modeller,
Beräkningsvetenskap I
Beräkningsvetenskap I Jarmo Rantakokko Martin Almquist Stefan Pålsson Vårterminen 2013 Varför beräkningsvetenskap? Idag spelar numeriska simuleringar med datorer, baserade på matematiska och statistiska
Sammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Beräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?
Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom
Matematik: Beräkningsmatematik (91-97,5 hp)
DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum
n Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas
Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar
Numerisk Analys, MMG410. Lecture 1. 1/24
Numerisk Analys, MMG410. Lecture 1. 1/24 Lärare Kursansvarig och examinator: Larisa Beilina, larisa@chalmers.se, room 2089. Office hours: tisdagar, 15:00-16.00. Handledare för Datorlaborationer och övningar
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Ordinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Ordinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet
NUMERISKA METODER HT01 för Energiteknik & Teknisk fysik HT01 Institutionen för Datavetenskap Umeå Universitet Dagens pass (föreläsning 1-2) Allmän info del 1 (kursens poäng, utlåning av Matlab, Matlab
Datoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016
Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16
FÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen
Tentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Inledande matematik M+TD
Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering
Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik
SF Numeriska metoder, grundkurs
- Numeriska metoder, grundkurs Introduktionsföreläsning, September 1, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/16 Föreläsning 1 Om föreläsaren Om ämnet Om kursen Matlab
Analys av elektriska nät med numeriska metoder i MATLAB
Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare
SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Optimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
Fel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå
Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Numeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Lokalt trunkeringsfel och noggrannhetsordning Definition: Det lokala trunkeringsfelet är det fel man gör med en numerisk metod när man utgår från det exakta värdet vid
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
2D1210, Numeriska Metoder, GK I för V 2.
Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information
SF Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition KTH - SCI
- Numeriska metoder, grundkurs Föreläsning 5: Felanalys, felkalkyl och kondition Oktober 13, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/5 1 Exempel: Newtons metod f=@(x)
Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Datavetenskapligt program, 180 högskolepoäng
GÖTEBORGS UNIVERSITET UTBILDNINGSPLAN IT-fakultetsstyrelsen 2013-02-14 Datavetenskapligt program, 180 högskolepoäng (Computer Science, Bachelor s Programme, 180 credits) Grundnivå/First level 1. Fastställande
Introduktion till kursen och MATLAB
Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Newtons metod och arsenik på lekplatser
Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare
Interpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
NAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Mathematical Statistics, 120 credits
Naturvetenskapliga fakulteten NAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Program med akademiska förkunskapskrav och med slutlig examen på avancerad nivå / Second
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Laboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
f(x + h) f(x) h f(x) f(x h) h
NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING
Lokal examensbeskrivning Dnr: 541-2072-10 Sid 1 (5) CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING INRIKTNING: TEKNISK DATAVETENSKAP SPECIALISATION: COMPUTING SCIENCE AND ENGINEERING 1 Fastställande
Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp
Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Dag Wedelin, bitr professor, och K V S Prasad, docent Institutionen för data- och
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:
Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
PROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Dagens föreläsning (F15)
Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift
PROGRAMMERING I MATEMATIK. Ämnets dag 2017 Göteborgs universitet, Matematiska Vetenskaper Åse Fahlander och Laura Fainsilber
PROGRAMMERING I MATEMATIK Ämnets dag 2017 Göteborgs universitet, Matematiska Vetenskaper Åse Fahlander och Laura Fainsilber Syfte: Inspirera till att använda programmering som verktyg för matematikinlärning
Tentamen i Beräkningsvetenskap I (1TD393)
Tentamen i Beräkningsvetenskap I (TD9) Skrivtid: 6 januari kl 4 7 OBS! timmar! Hjälpmedel: Godkänd litteratur: Mathematics handbook, Physics handbook. Penna, suddgummi, miniräknare och linjal får användas.
Välkomna till DIT012 IPGO
Välkomna till DIT012 IPGO 1 Lärare och Handledare Kursansvariga, examinatorer, föreläsare och handledare Joachim von Hacht, hajo@chalmers.se, 772 1003 Handledare (se även kurssida) Alexander Sjösten, sjosten@chalmers.se
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen
Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)
Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall
FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 HEMSIDA Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms032/
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
PROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
Allmän studieplan för utbildning på forskarnivå i beräkningsvetenskap
Teknisk-naturvetenskaplig fakultet Umeå universitet, 901 87 Umeå Telefon: 090-786 50 00 www.teknat.umu.se Dnr FS 4.1.4-1421-14 Datum 2014-10-10 Sid 1 (5) Allmän studieplan för utbildning på forskarnivå
Kursutvärdering Matematisk analys IV H11
Matematisk analys IV, höstterminen 20. Responses: 9 Kursutvärdering Matematisk analys IV H. Du är Kvinna 33 3 Man 67 6 2. Varför har du läst denna kurs? Intresse för ämnet 33 3 Lättare att få jobb Förkunskapskrav
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
ÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Naturvetenskapliga fakultetens
PROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
TANA81: Föreläsning 2
TANA81: Föreläsning 2 - Projektplanen - Projektuppgifter - Projektplanen - Gruppindelning - Beställarmötet Typeset by FoilTEX 1 Projektplanen I Projektplanen beskrivs hur och när arbetet skall genomföras,
SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011
Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i
13 1MA302 Automatateori DV1 4 A D, M 1TD442 Algoritmer och datastrukturer DV1 6 A D
4.2 Årskurs 1 Studierna inleds med en frivillig introduktion till utbildningen omfattande två veckor. Därefter enligt nedanstående lista. Period Kurskod Kursnamn Poäng Nivå Ämne 11 1MA316 Introduktionskurs
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
Utbildningsplan för kandidatprogram i fysik, 180
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för kandidatprogram i fysik, 180 högskolepoäng Grundnivå Bachelor of Science in Physics 1. Beslut om fastställande Utbildningsplan
Datavetenskapliga programmet, 180 hp
HÖGSKOLAN I GÄVLE UTBILDNINGSPLAN GRUNDNIVÅ DATAVETENSKAPLIGA PROGRAMMET Programkod: TGDAK Inriktningskod IT-arkitekt: ITAR Inriktningskod visiomatik: VISI Fastställd av NT-nämnden 2006-09-21 Reviderad