Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi
|
|
- Thomas Andreasson
- för 9 år sedan
- Visningar:
Transkript
1 Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska modeller Talrepresentation Numerisk lösning av ekvationer simulering av komplexa fysikaliska förlopp Beräkningsvetenskap handlar om hur man gör detta på ett effektivt, noggrannt och pålitligt sätt! Ämnet är tvärvetenskapligt och har gränsytor mot matematik, datavetenskap och olika tillämpningar, främst inom naturvetenskap och teknik. Exempel på tillämpningar: Simulering av snödrift för ett av ombyggnadsförslagen Sylarnas fjällstation innan ombyggnaden Meteorologi: Vad blir det för väder imorgon eller hur kommer klimatet att förändras? Alla prognoser från SMHI beräknas numeriskt och tolkas sedan av meteorologer. Oceanografi: Hur kommer vattenflöden, salthalt, temperatur och isutbredning att variera I Östersjöområdet? Var och när behöver isbytarna skickas ut? 1
2 Bioinformatik: Var i genomet finns gener som påverkar exempelvis storlek? + = - Identifiera sekvenser av gener i DNA bestående av 3 miljader baser - Numerisk simulering för design av effektiva läkemedel Hur sprider sig den medicin som injiceras i ögat mot exempelvis starr? Fysik: Vad händer i ett flygplan när blixten slår ner? Hur designar man ett flygplan för minsta möjliga radarreflektion? Molekyldynamik: Om man ändrar ett material på molekylnivå vilka egenskaper förväntas materialet få? 2
3 Mekanik: Hur bygger man krocksäkra bilar? Astronomi: Hur bildas stjärnor, supernova och svarta hål? Virtuella krocktester av preliminär design spar både tid och pengar. Numeriska beräkningar av luftflödet för optimal design av aerodynamiska egenskaper Kemi: Hur får man en effektiv förbränning och bra bränsleekonomi? Simulering av hur förbränning övergår i detonation (vilket vill undvikas i bilmotor) Datavetenskap: I vilken ordning ska träffarna visas? OBS, de flesta program innehåller alltid någon numerisk komponent (t.ex. talrepresentation, bildtransformation, simulering, beräkning) - Internetservrar - Databaser - Spel 3
4 Dual-core laptop 280 core PC-cluster 2x quad-core => 8-core PC 1+8 Multicore playstation Numeriska beräkningar och simuleringar är ofta mycket dataintensiva och utförs på parallelldatorer. Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder. Resultat: Ger approximativ lösning. Verkligheten Dålig noggrannhet Idealisering Matematisk modell Approximation Numerisk metod Implementering Bugg, indata Datorkörning Lösning Nej OK? Ja Otillräcklig modell verklighet Lösning Numeriska metoder Beräkningsvetenskap Ett (trivialt) exempel Beräkna arean på jorden med den matematiska modellen A=4πr2 Ett mer realistiskt exempel Innehåller flera approximationer och fel: Jorden approximeras av en sfär idealisering av jordens verkliga yta Värdet på radien baseras på empiriska mätningar och tidigare beräkningar Värdet på π kräver trunkering (avhuggning) av oändlig decimalutveckling Indata och resultat avrundas av datorn modeller Verkligheten Beräkna egenfrekvenser och svängningsmoder för bron. 4
5 Modellera bron som en tunn sträng: Matematisk modell Matematisk modell Där u förskjutningen i y-led, T spänningen i strängen och p dess densitet. Modellen är en förenkling av verkligheten (1D) Kan bygga ut den till flera dimensioner för att göra den mer realistisk blir då mer komplicerad Svårt bestämma parametrarna T,p. Kan variera för olika material (ställen). Modellen innehåller inte bärlinor Svårt eller omöjligt att göra en modell som helt överensstämmer med verkligheten Slutsats: Modellen en idealisering av verkligheten! Numerisk metod Problem! Kan ej lösas med vanliga matematiska (analytiska) metoder. Vi använder istället en numerisk metod. Numeriska metoder bygger i detta fall på diskretisering, dvs kontinuerliga intervall ersätts med diskreta punkter. Beräkning sker endast i dessa punkter medför diskretiseringsfel Metoderna har olika egenskaper och kan vara bra ur en synvinkel men dåliga ur en annan. Exempelvis kan en viss metod vara effektiv (snabb), men i vissa lägen vara instabil Implementera metoden, dvs skriv program för den numeriska metoden (C++, Java, MATLAB,...) eller Använd befintlig programvara, t ex MATLAB Ofta krävs en kombination av båda! Indata till programmet, t ex T,p baseras vanligen på mätningar och är inte exakta Krävs ett initialtillstånd, dvs böjningen vid tiden t=0. Detta mäts ej exakt utan innehåller fel Datorn avrundar alla beräkningar Lösning Lösningen OK? Tolka resultat Tillräckligt effektivt och snabbt? Är felet tillräckligt litet? Exempel: Vilken betydelse har datorns noggrannhet i beräkningarna? Betrakta uttrycket: y=((1/3-(1/3-3/10)*10)*10^12)^100 På räknare: y=5.15*10^47 Exakt: y=0! Vad hände? Slutsats: Även exakta matematiska uttryck kan ge betydande fel vid numerisk beräkning (exempel på instabil beräkning) 5
6 Frågeställningar inom beräkningsvetenskap Datavetenskap Numeriska metoder Matematik Tillämpningsämnen Exekveringstid? Minnesutnyttjande? Vilken typ av dator? Numeriska metoder Noggrannhet? Stabilitet? Kondition? Realistisk lösning? Tillräcklig model? Talrepresentation Felanalys Lösning av ekvationer Linjära ekv system Icke-linjär ekv Integraler Simulering av dynamiska förlopp Kurvanpassning Ordinära diff ekv Partiella diff ekv Egenvärdesproblem BV I BV II BV III Fem olika block Varje block har strukturen Datorlab => Föreläsning (en eller två) => Workout + problemlösning på dator Problemlösningspass => Miniprojekt Alla delar hänger ihop om man t ex missat labben förstår man föreläsningen sämre Alla delar tillsammans ger fullständig förståelse av blocket Laborationer Verifiering/ Förståelse Upptäckt (Varför/hur?) Teori Simuleringar/datorberäkningar Beskrivning/ Idealisering Citat från tidigare kursvärderingar: Det är framförallt sampelet mellan de olika formerna som varit bra. Att först ha laboration, sen föreläsning, workout och sist problemlösning gav förståelse och väl behövlig repetition. När man var klar med ett block kunde man det väl. Jag tycker det hänger ihop bra. Först får man testa praktiskt utan att förstå och sen får man förklarat för sig och till sist så faller teorin på plats när man gör workouten. 6
7 Kursens mål Kursens mål, forts För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, diskretisering, noggrannhet, noggrannhetsordning, stabil- resp ickestabil algoritm, maskinepsilon, diskretiseringsfel (trunkeringsfel), iteration, kondition; översiktligt förklara idén bakom de algoritmer som behandlas i kursen; Visa hur algoritmerna som behandlas kan användas för lösning av tillämpningsproblem Redogöra för skillnaden i metodik vid datorberäkningar i jämförelse med analytisk lösning och de effekter som flyttalsrepresentation och diskretisering medför; Använda grundläggande programmeringsstrukturer (if, while, for) i algoritmer och i programmeringskod vid problemlösning; Givet ett mindre beräkningsproblem, strukturera och dela upp i underproblem, formulera algoritm för lösning av problemet, samt implementera i ett programmeringsspråk Redogöra för hur parametrar överförs till funktioner samt skillnaden mellan globala och lokala variabler i program Förstå enkel programmeringskod och skriva egna välstrukturerade mindre beräkningsprogram Mål, forts I en mindre rapport förklara och sammanfatta lösningsmetoder och resultat på ett överskådligt sätt. 7
Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi. Jarmo Rantakokko Josefin Ahlkrona Karl Ljungkvist
Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Karl Ljungkvist Vårterminen 2012 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska modeller Talrepresentation
Läs merBeräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon,
Läs merBeräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Läs merIntroduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)
Läs merIntroduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion
Läs merBeräkningsvetenskap I
Beräkningsvetenskap I Jarmo Rantakokko Magnus Grandin Emil Kieri Vårterminen 2014 Varför beräkningsvetenskap? Idag spelar numeriska simuleringar med datorer, baserade på matematiska och statistiska modeller,
Läs merTekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Läs merBeräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi
Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,
Läs merBeräkningsvetenskap I
Beräkningsvetenskap I Jarmo Rantakokko Martin Almquist Stefan Pålsson Vårterminen 2013 Varför beräkningsvetenskap? Idag spelar numeriska simuleringar med datorer, baserade på matematiska och statistiska
Läs merIntroduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information
Läs merIntroduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg
Läs merOrdinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Läs merFallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Läs merInledande matematik M+TD
Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet
Läs merSammanfattninga av kursens block inför tentan
FÖRELÄSNING 14 Sammanfattninga av kursens block inför tentan BILD Vi har jobbat med numerisk metoder, datorprogram och tolkning av lösning. Numeriska metoder BILD olika områden: Linjära ekvationssytem,
Läs merMatematik: Beräkningsmatematik (91-97,5 hp)
DNR LIU-2012-00260 1(5) Matematik: Beräkningsmatematik (91-97,5 hp) Programkurs 7.5 hp Mathematics: Numerical Methods (91-97,5 cr) 9AMA01 Gäller från: 2017 VT Fastställd av Grundutbildningsnämnden Fastställandedatum
Läs merTMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Läs merOrdinära differentialekvationer,
Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1
Läs merIntroduktion till kursen och MATLAB
Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik
Läs merDagens föreläsning (F15)
Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift
Läs merGrundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp
Grundläggande programmering med matematikdidaktisk inriktning för lärare som undervisar i gy eller komvux gy nivå, 7,5 hp Dag Wedelin, bitr professor, och K V S Prasad, docent Institutionen för data- och
Läs merTentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Läs merUtbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå
Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns
Läs merExempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016
Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Vilka metoder har vi tagit upp? Euler framåt Euler bakåt Trapetsmetoden y k+ = y k + hf(t k, y k ), explicit y k+ = y k + hf(t k+, y k+ ), implicit y k+ = y k + h (f(t
Läs merNumerisk Analys, MMG410. Lecture 1. 1/24
Numerisk Analys, MMG410. Lecture 1. 1/24 Lärare Kursansvarig och examinator: Larisa Beilina, larisa@chalmers.se, room 2089. Office hours: tisdagar, 15:00-16.00. Handledare för Datorlaborationer och övningar
Läs merTentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 017-0-14 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merLINKÖPINGS TEKNISKA HÖGSKOLA
Utdrag ur LITHs Studiehandbok Programspecifik infromation Matematik ht-1998 Studiehandboken finns på http://www.lith.liu.se/sh/ LINKÖPINGS TEKNISKA HÖGSKOLA c4 UTBILDNINGSPROGRAMMET FÖR MATEMATIK, 120-160
Läs merKurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer
Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem
Läs merBeräkningsvetenskap och Matlab. Vad är MATLAB? Vad är MATLAB? Användningsområden. Vad är MATLAB? Grunderna i Matlab. Beräkningsvetenskap == Matlab?
Beräkningsvetenskap och Matlab Beräkningsvetenskap == Matlab? Grunderna i Matlab Beräkningsvetenskap I Institutionen för, Uppsala Universitet 1 november, 2011 Nej, Matlab är ett verktyg som används inom
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs merSammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:
Läs merUtbildningsplan för kandidatprogram i fysik, 180
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för kandidatprogram i fysik, 180 högskolepoäng Grundnivå Bachelor of Science in Physics 1. Beslut om fastställande Utbildningsplan
Läs merAnalys av elektriska nät med numeriska metoder i MATLAB
Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare
Läs mer7 november 2014 Sida 1 / 21
TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av
Läs merFÖRSÄTTSBLAD TILL TENTAMEN. ELLER (fyll bara i om du saknar tentamenskod): Datum: 16 januari Bordsnummer:
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 16 januari 2013 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393)
Läs merNATURVETENSKAPLIGA FAKULTETEN
NATURVETENSKAPLIGA FAKULTETEN Utbildningsplan Dnr GU 2019/1736 Matematikprogrammet, 180 högskolepoäng Bachelor's Programme in Mathematics, 180 credits Programkod: N1MAT 1. Fastställande Utbildningsplanen
Läs merBlock 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Läs merSF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merBakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1
Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut
Läs mer2D1210, Numeriska Metoder, GK I för V 2.
Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information
Läs merFMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Läs merLAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen
Läs merLösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs merDatavetenskapligt program, 180 högskolepoäng
GÖTEBORGS UNIVERSITET UTBILDNINGSPLAN IT-fakultetsstyrelsen 2013-02-14 Datavetenskapligt program, 180 högskolepoäng (Computer Science, Bachelor s Programme, 180 credits) Grundnivå/First level 1. Fastställande
Läs merMatematik och Kemi på Chalmers
Matematik och Kemi på Chalmers Karin Kraft och Stig Larsson Christoffer Cromvik och Christoffer Thomée Beräkningsmatematik Chalmers tekniska högskola Göteborgs universitet 1 November 2004 p. 1/1 Moderniserade
Läs merTANA81: Föreläsning 2
TANA81: Föreläsning 2 - Projektplanen - Projektuppgifter - Projektplanen - Gruppindelning - Beställarmötet Typeset by FoilTEX 1 Projektplanen I Projektplanen beskrivs hur och när arbetet skall genomföras,
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merGÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen
Läs merFel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merOptimeringslara = matematik som syftar till att analysera och. Optimeringslara ar en gren av den tillampade matematiken.
Optimal = basta mojliga. Optimeringslara = matematik som syftar till att analysera och nna det basta mojliga. Anvands oftast till att nna ett basta handlingsalternativ i tekniska och ekonomiska beslutsproblem.
Läs merBlock 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
Läs mern Kap 4.1, 4.2, (4.3), 4.4, 4.5 n Numerisk beräkning av derivata med n Felen kan t ex vara avrundningsfel eller mätfel n Felet kan mätas
Datoraritmetik Beräkningsvetenskap I/KF Kursboken n Kap 4., 4., (4.3), 4.4, 4. n I kap 4.3 används Taylorutvecklingar. Om du ännu inte gått igenom detta i matematiken, kan du oppa över de delar som beandlar
Läs merPROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
Läs merTentamen i: Beräkningsvetenskap I och KF
Tentamen i: Beräkningsvetenskap I och KF Skrivtid: december 2014 kl 14 00 17 00 OBS! 3 timmar! Hjälpmedel: Penna, suddgummi, miniräknare och linjal får användas. Formler finns i bifogad formelsamling.
Läs merPROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
Läs merNUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet
NUMERISKA METODER HT01 för Energiteknik & Teknisk fysik HT01 Institutionen för Datavetenskap Umeå Universitet Dagens pass (föreläsning 1-2) Allmän info del 1 (kursens poäng, utlåning av Matlab, Matlab
Läs merBose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
Läs merLaboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Läs merSymboler och abstrakta system
Symboler och abstrakta system Warwick Tucker Matematiska institutionen Uppsala universitet warwick@math.uu.se Warwick Tucker, Matematiska institutionen, Uppsala universitet 1 Vad är ett komplext system?
Läs merNumeriska metoder för ODE: Teori
Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för
Läs merTillämpad vågrörelselära FAF260, 6 hp
Tillämpad vågrörelselära FAF260, 6 hp Inför laborationerna Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till
Läs merÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle
Humanistiska och teologiska fakulteterna ÄMAD04, Matematik 4, 30 högskolepoäng Mathematics 4, 30 credits Grundnivå / First Cycle Fastställande Kursplanen är fastställd av Naturvetenskapliga fakultetens
Läs merPraktisk beräkning av SPICE-parametrar för halvledare
SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi
Läs merIF1611 Ingenjörsmetodik (Engineering Fundamentals)
IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag
Läs merFel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
Läs merModell och verklighet och Gy2011
Modell och verklighet och Gy2011 Innehållet i Modell och verklighet stämmer väl överens med ämnesplanen och det centrala innehållet i Gy2011. I ämnesplanen för Kemi, www.skolverket.se, betonas att undervisningen
Läs merAlexander Medvedev Rum 2111 Dynamiska system
Dynamiska system Alexander Medvedev am@it.uu.se Rum 2111 Kursen Föreläsningar 15 Lektioner - 10 Laborationer: Matlab, processlab Inluppar, 3 stycken Tentan 10/12-2004 Föreläsning 1 System och deras modeller
Läs merDatoraritmetik. Från labben. Från labben. Några exempel
Datoraritmetik Beräkningsvetenskap I Från labben Två huvudtyper av fel: diskretiseringsfel och avrundningsfel Olika sätt att mäta fel: relativt fel, absolut fel Begreppen ε M, Inf, NaN, overflow, underflow,
Läs merFacit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1 Del A Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på
Läs merIntroduktion till galaxer och kosmologi (AS 3001)
Institutionen för astronomi VT-13 Allmänt Introduktion till galaxer och kosmologi (AS 3001) VT-13 Kursbeskrivning Kursen Introduktion till galaxer och kosmologi har målet att du som student ska få en introduktion
Läs merModellbygge och simulering
DNR LIU-2017-00432 1(5) Modellbygge och simulering Programkurs 6 hp Modelling and Simulation TSRT62 Gäller från: 2017 VT Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum
Läs merNAMAT, Masterprogram i matematik, 120 högskolepoäng Master Programme in Mathematics, 120 credits
Naturvetenskapliga fakulteten NAMAT, Masterprogram i matematik, 120 högskolepoäng Master Programme in Mathematics, 120 Program med akademiska förkunskapskrav och med slutlig examen på grundnivå / First
Läs merLABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
Läs merFMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 HEMSIDA Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms032/
Läs merValinformation Mekatronik VT 2015
Valinformation Mekatronik VT 2015 Mekatronik 180hp Campus Lindholmen Mekatronikprogrammet, åk 3 Åk3 Läsår 2014/15 (rekommenderat) Tillämpad reglerdesign (Valbar) Mekatronikprojekt Industriell ekonomi och
Läs merPROGRAMMERING. Ämnets syfte. Kurser i ämnet
PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration
Läs merNAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Mathematical Statistics, 120 credits
Naturvetenskapliga fakulteten NAMAS, Masterprogram i matematisk statistik, 120 högskolepoäng Master Programme in Program med akademiska förkunskapskrav och med slutlig examen på avancerad nivå / Second
Läs merKosmologi. Programkurs 6 hp Cosmology TFYA71 Gäller från: Fastställd av. Fastställandedatum. Programnämnden för elektroteknik, fysik och matematik, EF
1(6) Kosmologi Programkurs 6 hp Cosmology TFYA71 Gäller från: Fastställd av Programnämnden för elektroteknik, fysik och matematik, EF Fastställandedatum LINKÖPINGS UNIVERSITET 2(6) Huvudområde Fysik,Matematik,Tillämpad
Läs merVälkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Läs merKursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2016.
Humanistiska och teologiska fakulteterna ÄFYB23, Fysik: Grundläggande kvantmekanik, statistisk mekanik och kvantstatistik för lärare, 15 högskolepoäng Physics: Basic Quantum Mechanics, statistical mechanics
Läs merNewtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Läs merGemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund
Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska
Läs merLaboration 3. Funktioner, vektorer, integraler och felskattning
1 SF1520 VT2017 NA, KTH 16 januari 2017 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,
Läs merFacit Tentamen i Beräkningsvetenskap I (1TD393) STS ES W K1
Facit Tentamen i Beräkningsvetenskap I (1TD9) STS ES W K1 Utför överskådlig beräkning, och presentera svar på följande frågor. Det bifogade svarsarket måste användas, så lös först uppgifterna på ett kladdpapper,
Läs merNAMAT, Masterprogram i matematik, 120 högskolepoäng Master Programme in Mathematics, 120 credits
Naturvetenskapliga fakulteten NAMAT, Masterprogram i matematik, 120 högskolepoäng Master Programme in Mathematics, 120 Program med akademiska förkunskapskrav och med slutlig examen på grundnivå / First
Läs merA-Ö Ämnet i pdf Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens
Läs merSF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)
Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merU T B I L D N I N G S P L A N
Dnr: 1053/2008-515 Utbildningsnämnden för grundnivå och avancerad nivå inom matematik, naturvetenskap och teknik U T B I L D N I N G S P L A N erprogrammet, 180 högskolepoäng Programme in Physics, 180
Läs merLINKÖPINGS TEKNISKA HÖGSKOLA
Utdrag ur LITHs Allmänt Studiehandbok Studiehandboken finns på http://www.lith.liu.se/sh/ LINKÖPINGS TEKNISKA HÖGSKOLA 3 c4 UTBILDNINGSPROGRAMMET FÖR MATEMATIK, 120-160 poäng /Mathematics/ c4.1 Syfte PROGRAMSPECIFIK
Läs mer