TANA81: Föreläsning 2
|
|
- Ingegerd Strömberg
- för 6 år sedan
- Visningar:
Transkript
1 TANA81: Föreläsning 2 - Projektplanen - Projektuppgifter - Projektplanen - Gruppindelning - Beställarmötet Typeset by FoilTEX 1
2 Projektplanen I Projektplanen beskrivs hur och när arbetet skall genomföras, och vilka resurser som behövs. Dessutom beskrivs vad som skall levereras. Exempel I Dokumentplanen beskrivs vilka dokument som skall produceras. Det beskrivs hur dokumentens kvalitet skall garanteras (dvs vem som granskar/godkänner). OBS Alla rubriker i mallen skall användas. Det förklaras hysfat vad som bör stå där läroboken. Typeset by FoilTEX 2
3 Aktivitetslistan I Aktivitetslistan finns samtliga moment som behöver slutföras innan projektet är klart. Aktivitererna skall dessutom vara tidsbestämda. Exempel I ett projekt skall en komplicerad differential ekvation lösas numeriskt. Det är viktigt att den metod vi implementerat fungerar. Vi måste därför hitta ett förenklat fall, med analytisk lösing, för att testa vår metod på. Aktivitet Beskrivning Tid 1 Implentera numeriska metoden i Matlab 15h 2 Hitta ett analytiskt lösbart testfall till metoden. 8h 3 Lös testfallet numeriskt och verifiera att resultatet blir rätt. 1h Aktiviteterna måste utföras i ordning (först 1, 2, sist 3). Detta måste synas i Tidplanen. Omfattning 5-15h gör att förseningar kan upptäckas. Typeset by FoilTEX 3
4 Exempel Bruksanvisning till systemet skall levereras under Vecka 16. Den skall innehålla en beskrivning av ett par olika delsystem. Detta ger ett antal aktiviteter. Aktivitet Beskrivning Tid 4 Dokumentera delsystem 1. 10h 5 Dokumentera delsystem 2 10h 6 Sammanställ Bruksanvisning 15h 7 Korrekturläs dokument. 8h Här kan korrekturläsaning av samtliga dokument sammanfattas som en punkt. På liknande sätt kan man ha en aktivitet som är att delta i möten. Det är viktigt att plannera för förseningar. Det är lämpligt att ha en stor aktivitet Reservtid. Typeset by FoilTEX 4
5 Tidplanen Givet Aktiviteter och uppskattad Tidsåtgång måste vi fortfarande veta när arbetet skall utföras. - Bestäm hur mycket arbete som skall läggas ned varje vecka - Fördela tillgänglig tid på olika aktiviteter. - Måste vissa aktiviterer utföras i ordning? Vill ni ta en paus under exempelvis omtenta perioden så skall det synas i tidplanen. Typeset by FoilTEX 5
6 TANA81 Projektinnehåll Målsättningen är att varje projektgrupp skall Självständigt lösa ett realistiskt tekniskt problem där matematisk metodutveckling är en viktig del. Implementera den matematiska metoden i Matlab på ett sådant sätt att den är praktiskt användbar. Tillämpa kurser inom utbildningen. Linjär algebra, Diskret matematik, Optimeringslära, Programmering i Matlab. Presentera problemet, lösningsmetoden, och datorprogram muntligt och skriftligt. Typeset by FoilTEX 6
7 Projekt 1: Interpolation och Bilder Ett stort antal problem inom bildbehandling kan formuleras som interpolationsproblem. Det gäller exempelvis bildrestaurering där skadade delar skall ersättas, digital zoom där upplösningen på en bild skall ändras, eller bild kompression där minnesåtgången för att spara bilden skall minskas. Krav Formulera Interpolationsproblemet på lämpligt sätt. Representera områden. Matematik: Partiella Differential Ekvationer. Linjär Algebra. Typeset by FoilTEX 7
8 Projekt 2: Automatisk Tecken Identifiering Ofta är man intresserad av att sortera objekt i olika klasser. Man måste då ha information om vad som utmärker de olika typerna av objekt. Detta kallas Klassifieringsproblemet. Exempel: Skräppostfilter. Sortering av brev (postnummer) Matematik: Linjär algebra. Ortogonala baser. Typeset by FoilTEX 8
9 Projekt 3: Kryptering med Öppen Nyckel Kryptering används för att hindra obehöriga från att läsa känslig information. För att läsa den krypterade texten krävs en nyckel som måste hållas hemlig. Texten representeras med en följd heltal (ASCII tabellen). Krypteringssteget innebär att dessa byts ut mot andra heltal. Kryptering: y = Crypt( x, PublicKey ); Avkryptering: x = Decrypt( y, PrivateKey ); Krav: Skall vara svårt att hitta x givet y och den publika nyckeln. Finns en hel del att tänka på för att systemet skall bli bra. Matematik: Diskretmatematik. Heltalsaritmetik. Typeset by FoilTEX 9
10 Projekt 4: Strålbehandling av Cancer Strålbehandling av cancer bygger på att frisk vävnad lättare motstår effekterna av radioaktiv strålning än en cancertumör. Ett antal tunna rör förs in i patienten och strålkälla placeras sedan inne i röret. Strålkälla Frågor: Hur länge skall man låta strålkällan stanna i de olika positionerna? Hur skall en behandlingsplan beräknas för en viss patient? Matematik: Linjär algebra. Optimeringslära. Typeset by FoilTEX 10
11 TANA81: Inför beställarmötet Saker att göra: Fundera på vem som skall vara projektledare. Fundera på vem som skall vara dokumentansvarig. Titta igenom kurshemsidan. Läs igenom din Kravspecifikation. Typeset by FoilTEX 11
TANA81: Matematikprojekt
TANA81: Matematikprojekt Period: VT1 och VT2 2015 Kursansvarig: Fredrik Berntsson (fredrik.berntsson@liu.se) Kurshemsida: http://courses.mai.liu.se/gu/tana81/ Typeset by FoilTEX 1 TANA81 Scenario Inför
Kravspecifikation Fredrik Berntsson Version 1.1
Kravspecifikation Fredrik Berntsson Version 1.1 Status Granskad FB 2016-02-01 Godkänd FB 2015-02-01 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2015-02-01 Första versionen
Kravspecifikation Fredrik Berntsson Version 1.3
Kravspecifikation Fredrik Berntsson Version 1.3 Status Granskad FB 2017-01-27 Godkänd FB 2017-02-27 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2014-01-15 Första versionen
Hemuppgift 1, SF1861 Optimeringslära, VT 2017
Hemuppgift 1, SF1861 Optimeringslära, VT 2017 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas i Matematiks svarta postlåda (SF) för inlämningsuppgifter,
Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi
Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska
Kravspecifikation Fredrik Berntsson Version 1.3
Kravspecifikation Fredrik Berntsson Version 1.3 Status Granskad FB 2017-01-27 Godkänd FB 2017-01-27 Dokumenthistorik Version Datum Utförda ändringar Utförda av Granskad 1.0 2014-01-15 Första versionen
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.
GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om restklassaritmetik Mikael Hindgren 19 september 2018 Exempel 1 Klockan är nu 8.00 Vad är klockan om 78 timmar? Vad var klockan för 53 timmar sedan? 8 + 78
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 29 oktober, 2012 Lärare Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner)
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och
Före Kravspecifikationen
projektidé BP0 förstudie BP1 förberedelse BP2 Kravspecifikationen Beskriver VAD som ska utföras i projektet? projektdirektiv beslutspunkter specifikationer planer kunddokument rapporter protokoll M beställarens
Matematisk modellering
Matematisk modellering Genomgång 1 Pelle Matematikcentrum Lunds universitet 6 november 2018 Pelle Matematisk modellering 6 november 2018 1 / 25 Mål Dagens program Vad handlar kursen om, mål, kurskrav,
Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion
Kurser inom profilen Teknisk matematik (Y)
Kurser inom profilen Teknisk matematik (Y) Kurser i Optimeringslära Obligatorisk TAOP24 Optimeringslära fortsättningskurs Y Valbara TAOP04 Matematisk optimering TAOP34 Optimering av stora system TAOP87
TANA81: Simuleringar med Matlab
TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset
Introduktionsföreläsning
Introduktionsföreläsning Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 1 september, 2014 Lärare Emanuel Rubensson Outline 1 Vad är beräkningsvetenskap? 2 Information
Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå
Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns
Optimering av strålterapi
Optimering av strålterapi Anders Forsgren Optimeringslära och systemteori Institutionen för matematik KTH Presentation simuleringsteknik 3 oktober 2013 Optimering av strålterapi Gememensamt forskningsprojekt
Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi
Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,
NATURVETENSKAPLIGA FAKULTETEN
NATURVETENSKAPLIGA FAKULTETEN Utbildningsplan Dnr GU 2019/1736 Matematikprogrammet, 180 högskolepoäng Bachelor's Programme in Mathematics, 180 credits Programkod: N1MAT 1. Fastställande Utbildningsplanen
Hemuppgift 1, SF1861 Optimeringslära, VT 2016
Hemuppgift 1, SF1861 Optimeringslära, VT 2016 Examinator: Krister Svanberg, tel: 790 7137, krille@math.kth.se. Labassistent: David Ek, daviek@kth.se, Lämnas in till någon av oss senast tisdag 19 april
Innehåll (3) Innehåll (2) Innehåll (5) Innehåll (4) Innehåll (6) Innehåll (7) Dokumenthistorik. beställare, Översiktlig beskrivning av projektet
Bilden hämtad från http://www.liu.se/cul-resurser/lips/kartor/fore.htm Projektplanering Om inte projektet planeras noga, kommer det garanterat att misslyckas Projektplanen Krav på en projektplan Beskriver
Projektplanering. Projektplanen. Om inte projektet planeras noga, kommer det garanterat att misslyckas
Bilden hämtad från http://www.liu.se/cul-resurser/lips/kartor/fore.htm Projektplanering Om inte projektet planeras noga, kommer det garanterat att misslyckas Projektplanen Beskriver hur projektet ska utföras
Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15.
1 Matematiska Institutionen KTH Lösningar till några övningar inför lappskrivning nummer 3 på kursen Linjär algebra för D, vt 15. 1. Undersök om vektorn (1,, 1, ) tillhör span{(1,, 3, 4), (1, 0, 1, 1),
Beräkningsvetenskap introduktion. Beräkningsvetenskap I
Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, numerisk metod, diskretisering maskinepsilon,
Introduktion till kursen och MATLAB
Introduktion till kursen och MATLAB TNA005: Tillämpad matematik i teknik och naturvetenskap för ED1, KTS1, och MT1 vårterminen 2018 Berkant Savas Kommunikations- och transportsystem Institutionen för teknik
TANA81: Föreläsning 10
TANA81: Föreläsning 10 - Matematisk eller Teknisk Forskning. - Exempel på Kandidat eller Magister projekt. - Vad skall dokumenteras? Typeset by FoilTEX 1 Matematisk Grundforskning Definition Avståndet
TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Inledande matematik M+TD
Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet
Ansvarig organisation: Ekonomiskt ansvarig (verksamhetschef eller motsvarande): Förnamn och efternamn. Projektuppgifter: Projekt- och verksamhetsnamn:
Medel med ett socialt investeringsperspektiv Signerad ansökan skickas per post till Region Skåne, Diariet, 291 89 Kristianstad. Digital, ej signerad, kopia skickas i pdf-format till tommy.aspegren@skane.se
Kravspecifikation. LIPs. LiTH Stråldosplaner för cancerbehandling Fredrik Berntsson Version 1.4. Status. TANA81 Matematikprojekt
Kravspecifikation Fredrik Berntsson Version 1.4 LiTH Status Godkänd Fredrik Berntsson 2013-01-14 1 KravspecifikationCancer PROJEKTIDENTITET Linköpings tekniska högskola, Matematiska institution Namn Ansvar
Preliminär version Kopieringsunderlag till IPAn
Preliminär version 20160318 Kopieringsunderlag till IPAn Procent förändringsfaktor bråk * En Ihop-Parnings-Aktivitet med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
RSA-kryptering och primalitetstest
Matematik, KTH Bengt Ek augusti 2016 Material till kurserna SF1630 och SF1679, Diskret matematik: RSA-kryptering och primalitetstest Hemliga koder (dvs koder som används för att göra meddelanden oläsbara
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9
Fallstudie: numerisk integration Baserad på läroboken, Case Study 19.9 Beräkningsvetenskap DV Institutionen för Informationsteknologi, Uppsala Universitet 30 september, 2013 Att beräkna arbete Problem:
Hemuppgift 1, SF1861 Optimeringslära för T
Hemuppgift 1, SF1861 Optimeringslära för T Examinator: Per Enqvist, tel: 790 6298, penqvist@math.kth.se. Assistenter: Amol Sasane, sasane@math.kth.se, Mikael Fallgren, werty@kth.se. Lämnas in till någon
Datastrukturer och algoritmer
Innehåll Föreläsning En introduktion till projektmodellen LIPS Hashtabeller Att läsa: Dessa bilder + kapitel. Projekt definition Projekt En grupp av projektdeltagare utför under ledning av en projektledare
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Ekonomisk ansvarig (verksamhetschef eller motsvarande som har ekonomiskt ansvar för projektet) Förnamn och efternamn
Ansökningsblankett för år: Signerad ansökan skickas per post till Region Skåne, Diariet, Regionkansliet, 291 89 Kristianstad. Digital kopia skickas, ej signerad, i PDF format till folkhalsa@skane.se Ansökan
Introduktionsföreläsning. Kursens innehåll. Kursens upplägg/struktur. Beräkningsvetenskap I
Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Emanuel Rubensson (föreläsningar, lektioner) Martin Tillenius (lektioner) Elias Rudberg
Matematik: Matematiska modeller och modellering (84-91,5 hp)
DNR LIU 2012-00260 1(5) Matematik: Matematiska modeller och modellering (84-91,5 hp) Programkurs 8.5 hp Mathematics (84-91,5) 9GMA12 Gäller från: 2018 VT Fastställd av Styrelsen för utbildningsvetenskap
TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011
ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 4B, 2 oktober 2012, 08.45 09.45, i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna.
Efternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Lösning till kontrollskrivning 4A, den 8 oktber 23, kl.-2. i SF6 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna. Minst
Integration av numeriska metoder i kemiteknikutbildningen. Claus Führer, Matematikcentrum Michaël Grimsberg, Inst. för Kemiteknik
Integration av numeriska metoder i kemiteknikutbildningen Claus Führer, Matematikcentrum Michaël Grimsberg, Inst. för Kemiteknik 3:e pedagogiska inspirationskonferensen LTH, 31 maj 2005 Inledning Ny utbildningsplan
Ekonomisk ansvarig (verksamhetschef eller motsvarande som har ekonomiskt ansvar för projektet) Förnamn och efternamn
Ansökningsblankett för år 2013 Ansökan skickas per post till Region Skåne, Diariet, Regionkansliet, 291 89 Kristianstad. Digital kopia till folkhalsa@skane.se ANSÖKAN FÖR SAMVERKANSMEDEL FÖR LOKALA FOLKHÄLSOSATSNINGAR.
LiTH Autonom styrning av mobil robot 2007-02-15. Projektplan. Martin Elfstadius & Fredrik Danielsson. Version 1.0
Projektplan Martin Elfstadius & Fredrik Danielsson Version 1.0 Status Granskad Godkänd 1 PROJEKTIDENTITET Autonom styrning av mobil robot Vårterminen 2007 Linköpings Tekniska Högskola, ISY Namn Ansvar
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet
MATEMATIK. Ämnets syfte
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas, såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation
NATURVETENSKAPLIGA FAKULTETEN. Sjukhusfysikerprogrammet, 300 högskolepoäng
Utbildningsplan Dnr G 2018/338 NATURVETENSKAPLIGA FAKULTETEN Sjukhusfysikerprogrammet, 300 högskolepoäng Medical Physicist Programme, 300 credits Programkod: N1SJU 1. Fastställande Utbildningsplanen är
Protokollbeskrivning av OKI
Protokollbeskrivning av OKI Dokument: Protokollbeskrivning av OKI Sida 1 / 17 1 Syfte Det här dokumentet har som syfte att beskriva protokollet OKI. 2 Sammanfattning OKI är tänkt som en öppen standard
MATEMATIK. Ämnets syfte. Kurser i ämnet
MATEMATIK Ämnet matematik behandlar begrepp, metoder och strategier för att kunna lösa matematiska problem i vardags- och yrkeslivet. I ämnet ingår att föra och följa matematiska resonemang samt att arbeta
Matematik C (MA1203)
Matematik C (MA103) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma C (MA103) Matematik 03-08- Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven
Ekonomisk ansvarig (verksamhetschef eller motsvarande som har ekonomiskt ansvar för projektet) Förnamn och efternamn
Ansökningsblankett för Social investeringsfond. Signerad ansökan skickas per post till Region Skåne, Diariet, Regionkansliet, 291 89 Kristianstad. Digital kopia skickas, ej signerad, i PDF format till
Dokumentation och presentation av ert arbete. Kursens mål. Lärare Projektmedlemmar. Studenter Extern personal. Projektfaser. Projektroller.
Agenda Dokumentation och presentation av ert arbete Kursens mål Projektroller Reglerteknik Linköpings universitet Brytpunkter Mer detaljer om slutdokumenten Kursens mål 1. Lära sig jobba i projekt Projektroll
LIPs Andreas Bergström ChrKr Projektdirektiv16_Toyota_v2.0.doc CKr
Andreas Bergström 2016-09-08 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Planering och Sensorfusion för Autonom Truck Andreas Bergström, ISY Student Emil Selse och
Jarmo Rantakokko, , rum 2421,
5 januari 2007 Kursplanering 1 (9) Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvgen 2 Postadress: Box 337 751 05 Uppsala Telefon: 018
Matematisk Modellering
Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk
TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26
TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att
TMV166/186 Linjär Algebra M/TD 2009/2010
TMV166/186 Linjär Algebra M/TD 2009/2010 Examinator och föreläsare Carl-Henrik Fant E-post: carl-henrik.fant@chalmers.se Tel: 772 3557, kontor: Matematik L 3037 Övningsledare: ML11: Staffan Hägglund ML12:
Matematik 92MA41 (15hp) Vladimir Tkatjev
Matematik 92MA41 (15hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Varför problemlösning? Problemlösning ur historiskt perspektiv Information om kursen på hemsida Flervariabelanalysen
2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.
HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna
LINKÖPINGS TEKNISKA HÖGSKOLA
Utdrag ur LITHs Studiehandbok Programspecifik infromation Matematik ht-1998 Studiehandboken finns på http://www.lith.liu.se/sh/ LINKÖPINGS TEKNISKA HÖGSKOLA c4 UTBILDNINGSPROGRAMMET FÖR MATEMATIK, 120-160
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Projektplan. LiTH Reglering av Avgaser, Trottel och Turbo 2008-02-11. Fredrik Petersson Version 1.0. Status. Reglerteknisk Projektkurs RATT LIPs
Fredrik Petersson Version 1.0 Status Granskad 2008-02-11 NL, PA Godkänd 1 2 PROJEKTIDENTITET VT 2008, RATT-Gruppen Linköpings tekniska högskola, ISY- Fordonssystem Namn Ansvar Telefon E-post Daniel Ahlberg
ANTAL PLATSER Tentan till exp senast kl V Michael Patriksson GU 5 19/ /5-11 Adam Wojciechowski
Matematik/Matematisk statistik Göteborgs universitet Lotta Fernström, 12/4-11 Omentamensschema påsk 2011 : 0703-08 83 04 Glöm inte att anmäla dig till tentan (obligatorisk anmälan) en vecka före tentamensdatum.
Programmera ett kärnkraftverk
I lektionen programmeras en algoritm för att styra processen i en reaktor i ett kärnkraftverk. Eleverna får skapa en praktisk applikation och lära sig att skapa och modifiera algoritmer. En digital lektion
Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi
Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska
Projektplan. LiTH AMASE 2006-02-15 Accurate Multipoint Acquisition from Stereovision Equipment. Johan Hallenberg Version 1.0
AMASE 2006-02-15 Projektplan Johan Hallenberg Version 1.0 Granskad Godkänd 1 PROJEKTIDENTITET VT2006, AMASE Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Mikael Karelid kundansvarig (KUN)
Projektdirektiv Oskar Ljungqvist Sida 1. Kund/Examinator: Daniel Axehill, Reglerteknik/LiU
2018-08-30 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering, ISY Student, ISY Läsperiod 1-2, HT 2018. Projektet klart senast vid projektkonferensen. Löpande rapportering:
Projektdirektiv. Rikard Falkeborn Sida 1
2007 12 03 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Självetablerande sensornätverk med GPS och 3G, ISY Student David Lindgren, Läsperiod 3 4, vårterminen 2008.
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Infomet / Datateknik KursPM
Kurs HF1005 Informationsteknik och ingenjörsmetodik 6hp, HT 2013 Infomet / KursPM Utdrag ur kursplanen Fullständig kursplan finns på http://www.kth.se/student/kurser/kurs/hf1005 Mål Kursens övergripande
TANA81: Föreläsning 10
TANA81: Föreläsning 10 - Matematisk eller Teknisk Forskning. - Exempel på Kandidat eller Magister projekt. - Vad skall dokumenteras? Typeset by FoilTEX 1 Matematisk Grundforskning Definition Avståndet
Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000
2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng
En matematiklärarkollega hade tillsammans med sin klass noterat att talet
Anders Johansson Ekvationen x y = y x Exempel på problemlösning med hjälp av programmering Ekvationen x y = y x kan studeras med hjälp av algebra, numerisk analys och programmering. Författaren demonstrerar
Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista
Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda
Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
MATRISTEORI, 6 hp, vt 2010, Kurskod FMA120. MATRISTEORI Projektkurs, 3 hp, Kurskod FMA125. och
MATRISTEORI, 6 hp, vt 2010, Kurskod FMA120 och MATRISTEORI Projektkurs, 3 hp, Kurskod FMA125 Kursansvarig Sergei Silvestrov, Matematik LTH, rum MH562B, tel. 046-222885 Kurshemsidan http://www.maths.lth.se/matematiklth/vitahyllan/kursprogram/matristeori/
SF1544 LABORATION 2 INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER
SF1544 LABORATION INTEGRATION, MONTE-CARLO OCH BLACK-SCHOLES EKVATION FÖR OPTIONER Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda
LIPs Martin Lindfors ChrKr Projdir2017_sbd.doc CKr
Martin Lindfors 2017-08-22 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Minröjningssystem Martin Lindfors, ISY Student Torbjörn Crona och Martin Lindfors Läsperiod
Lokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva
Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del
prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000
Dokumentation och presentation av ert arbete
Dokumentation och presentation av ert arbete Reglerteknik Linköpings universitet Dagens föreläsning Första timmen Kursens mål Projektmodellen LIPS och dess användning i kursen Olika former av redovisning
KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng
1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT
SF1624 Algebra och geometri
SF64 Algebra och geometri Sjätte föreläsningen Mats Boij Institutionen för matematik KTH 5 januari, 07 Repetition Ett delrum i R n är slutet under addition x + y V om x, y V multiplikation med skalär a
Matematik I - vårtermin Anu Kokkarinen Kurskoordinator
Matematik I - vårtermin 2015 Anu Kokkarinen Kurskoordinator anuk@math.su.se 08-16 45 26 Allmänt om kursen Uppdelad i algebra och analys Halvfart: algebra under termin 1 analys under termin 2. Helfart:
Preliminär version Kopieringsunderlag till IPAn
Preliminär version 20160318 Kopieringsunderlag till IPAn Linjära funktioner och linjens ekvation * En Ihop-Parnings-Aktivitet med låg tröskel som tränar elevers begrepps-, procedur-/metod- och resonemangsförmåga
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 3 Problemklassificering Global/lokal optimalitet Konvexitet Generella sökmetoder Agenda Problemklassificering (kap 1.4, 2.1 2.3) Lokalt/globalt optimum
Projektplan. LiTH Segmentering av MR-bilder med ITK Anders Eklund. Version 1.0. Status. Bilder och grafik projektkurs, CDIO MCIV LIPs
Segmentering av MR-bilder med ITK 2006-02-02 Projektplan Version 1.0 Status Granskad Godkänd Bilder och grafik projektkurs, CDIO MCIV LIPs 1 PROJEKTIDENTITET MCIV 2006 VT Linköpings Tekniska Högskola,
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Rangordning av internetsidor - ett egenvärdesproblem för positiva matriser
Rangordning av internetsidor - ett egenvärdesproblem för positiva matriser Ett litet nätverk med 8 noder och ett antal länkar mellan noderna: 8 1 2 7 3 6 5 4 Hur kan vi rangordna noder? Vilken är viktigast?
SF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Matematik I. vårtermin Jennifer Chamberlain Kurskoordinator
Matematik I vårtermin 2018 Jennifer Chamberlain Kurskoordinator matematik-i@math.su.se 08-16 45 16 Allmänt om kursen Uppdelad i algebra och analys Halvfart: algebra under termin 1 analys under termin 2
Linjär algebra F1 Ekvationssystem och matriser
Information Ekvationer Ekvationssystem Matriser Linjär algebra F1 Ekvationssystem och matriser Pelle 2016-01-18 Information Ekvationer Ekvationssystem Matriser kursfakta hemsida frågelåda Fakta om Linjär