Polynomanpassningsprogram
|
|
- Charlotta Jonsson
- för 9 år sedan
- Visningar:
Transkript
1 Polynomanpassningsprogram Den här uppgiften skall göra en polynomanpassning av en tvåkolumners tabell enligt minstakvadrat kriteriet och presentera resultatet grafiskt. Uppgiftens tygndpunkt ligger på hanteringen av den grafiska presentationen. I ditt program skall man kunna välja datafil. Det gör man genom att lägga in klassen OpenDialog som ligger i klassbiblioteket Dialogs. Låt filtypen vara *.txt men möjliggör även att browsa efter filtypen *.* I uppgifterna kryptering och koppla till annat program... finns i detalj beskrivet hur man använder OpenDialogen. När man har valt datafil skall knappen Editera aktiveras. Genom att klicka på den knappen skall Window s inbyggda editor Notepad startas och den valda datafilen öppnas. Man skall då kunna skriva in sin tvåkolumners tabell och spara den. Vidare skall det finnas möjlighet att välja gradtalet hos polynomet. Det skall man välja med en ComboBox och valen skall vara heltalen från noll till sex. När fil och gradtal är valt skall knappen Poly Fit aktiveras. Klickar man på den skall programmet öppna datafilen och läsa in tvåkolumners tabellen och visa hur många datapunkter den innehöll. Därefter skall programmet göra en minstakvadratanpassning av talen till ett polynom av det valda gradtalet. De framräknade koefficienterna i polynomet samt RMS (Root Mean Square) skall visas i ett RichEdit-fönster, som finns i klassbiblioteket Win32 respektive i ett Edit-fönster som finns i Standardbiblioteket. För att visa grafiskt hur anpassningen gick skall ditt program innehålla två diagram. Använd dig av klassen Chart som ligger i klassbiblioteket Additional. Denna klass har väldigt många egenskaper så för Chart kan man öppna en Objektinspektor genom att dubbelklicka i diagrammet. En kurva i ett diagram kallas för Series. Det vänstra diagrammet skall innehålla två Series: primärdata som skall visas som points och en line som visar det framräknade polynomet. Varje datapunkt i datafilen skall alltså visas som en röd rektangel och polynomet visas som en sammanhängande linje. Per Nylén - 25 november (5)
2 I det högra diagrammet skall felen mellan datapunkterna och det värde som polynomet ger, visas i form av ett stapeldiagram, Bar. Sätt också ut titlar på diagrammen. Felen mellan datapunkterna och polynomet brukar kallas för residuals, dvs. restfel. Själva polynomanpassningen kräver en del räknande. Enklast uttrycker man det på matrisformalism. Vi ställer upp ekvationssystemet Y = X * A (1) där Y är vektorn y 1,y 2,y 3 osv., A är den obekanta vektorn som bildas av koefficienterna A 0, A 1,A 2 osv i polynomet, och X är den matris som bildas av x-värdenas potenser upp till j polynomets gradtal, dvs: x ij =x i där i=1..n och j=0..p, där n är antalet datapunkter och p är polynomets gradtal. För att lösa equ.1 förlänger man ekvation 1. med matrisen X s transponat ( X T ) och får då X T *Y = X T *X*A (2) Detta kallas för normalekvationerna och är p+1 ekvationer i p+1 obekanta. Den kan alltså ha en exakt lösning. Lösningen får man genom att förlänga med inversen till den kvadratiska matrisen X T *X, dvs: (X T *X) -1 *X T *Y = A (3) Har man tillgång till matrisoperationer behövs således bara lite matrismultiplikationer och en invertering. Man kan också lösa problemet med vanligt räknande, enligt följande recept: Börja med att öppna datafilen och läsa in mätvärdena till två arrayer X och Y. N:=1; While not EOF(Fil) do Readln(Fil, X[N], Y[N] ); if IOResult=0 then N:=N+1; Antal:=N-1; där X och Y är två arrayer [1..50] av typen Extended. Jag har begränsat antalet datapar till 50. För att minimera avrundningsfelen i beräkningarna utnyttjar jag processorn maximalt genom att använda datatypen Extended som representerar ett tal på potensform i 80 bitar. När du är klar med inläsningen skall du stänga filen. Vi kommer att behöva veta intervallet hos X-värdena, därför bestämmer du X max och X min med satserna: Xmin:=X[1]; Xmax:=X[1]; for j:=1 to Antal do Per Nylén - 25 november (5)
3 if Xmin>X[j] then Xmin:=X[j]; if Xmax<X[j] then Xmax:=X[j]; Nu är det dags att formulera normalekvationerna. Det gör du med satserna: Gradtal := boxorder.itemindex; //Hämta gradtalet For j:=0 to Gradtal do // Sätt upp normalekvationerna for i:=1 to Antal do begin Z[i]:=Y[i]*Power(X[i],j); for k:=0 to Gradtal do B[i,k]:=Power(X[i], j+k); end; R[j]:=0; for i:= 1 to Antal do R[j]:=R[j]+Z[i]; for i:=0 to Gradtal do M[j,i]:=0; for i:=0 to Gradtal do for k:=1 to Antal do M[j,i]:=M[j,i]+B[k,i]; där Z är en array [1..50] av Extended, B är en array [1..50, 0..6] av Extended, R är en array [0..6] av Extended och slutligen M är en array [0..6, 0..6] av typen Extended som slutligen innehåller koefficienterna i normalekvationerna. Slutligen skall vi lösa normalekvationerna och beräkna koefficienterna. Det gör vi med s.k. Gauss-elimination och återsubstitution. For i:=0 to Gradtal-1 do // Gausselimination for j:=i+1 to Gradtal do begin F:=M[j,i]/M[i,i]; R[j]:=R[j]-R[i]*F; for k:=i to Gradtal do M[j,k]:=M[j,k]-M[i,k]*F; end; For i:=0 to 6 do A[i]:=0; For i:= Gradtal downto 0 do // Beräkna koefficienterna A[i]:=R[i]/M[i,i]; for j:=i-1 downto 0 do R[j]:=R[j]-M[j,i]*A[i]; Vi har nu koefficienterna liggande i A[0] till A[Gradtal] och kan skriva ut dem i Koefficientfönstret. Jag använder mig av klassen RichEdit som ligger i klassbiblioteket Win32. För att få utskriften snygg bör du använda funktionen FloatToStrF som ger möjlighet till formatterad utskrift. Dessutom kollar jag om talet är positivt eller negativt. Per Nylén - 25 november (5)
4 reresult.text:=''; for i := 0 to Gradtal do if A[i]<0 then TalText:=': ' +FloatToStrF(A[i], ffexponent, 4,2) else TalText:=': '+FloatToStrF(A[i], ffexponent, 4,2); reresult.text:=reresult.text+' '+IntToStr(i)+TalText + #10; Nu skall du också presentera resultatet i de två diagrammen. I det vänstra diagrammet visas primärdata som punkter och det återberäknade polynomet som en kurva. Det vänstra diagrammet innehåller alltså två Series, där det första är av typen point och det andra av typen line. För att rita en kurva i ett diagram, börjar du med att radera den med satsen Series1.Clear; Därefter ritar du kurvan genom att anropa seriens metod AddXY for i:=1 to Antal do Series1.AddXY( X[i], Y[i],'', clred); På liknande sätt ritar du det återberäknade polynomet som en linje. För att få en snygg kurva har jag valt att rita kurvan med 10 gånger fler punkter än mina primärdata, och jag ritar den från X min till X max, som jag har beräknat tidigare. Series2.Clear; for i:=0 to Antal*10 do XX:=Xmin +(Xmax-Xmin)*i/(Antal*10); Series2.AddXY( XX, Poly(XX, A), '', clnavy); För att kunna studera detaljer i det här diagrammet vill jag att man skall kunna zooma in ett område och kunna gå tillbaka till den ursprungliga grafen. Zoomningen ställer du in i diagrammets General-flik, och för att gå tillbaka till den ursprungliga grafen när man klickar i grafen anropar man metoden: Chart1.UndoZoom; I det högra diagrammet skall du visa felet i varje mätpunkt, dvs skillnaden mellan primärdatas Y-värde och det värde som polynomet ger om man sätter in motsvarande X-värde. Samtidigt som du räknar ut felen (residualerna) passar du på att beräkna felkvadratsumman och därur RMS (Root Mean Square). RMS:=0; For i:=1 to Antal do Err[i]:=Y[i]-Poly(X[i], A); RMS:=RMS+SQR(Err[i]); // Err := Obs - Calc Per Nylén - 25 november (5)
5 if Antal>Gradtal then RMS:=SQRT(RMS/(Antal-Gradtal)) else RMS:=0; Om ekvationssystemet inte är överbestämt utan antalet ekvationer är lika med antalet obekanta får jag en exakt lösning och RMS=0. Jag skulle då dividera med noll när jag beräknar RMS. Därför gör jag en särskild koll av det. De beräknade residualerna skall jag nu visa som ett stapeldiagram (bar graph) i det högra diagrammet. Series3.Clear; for i:=1 to Antal do Series3.AddXY( X[i], Err[i], '', clred); Slutligen kan jag skriva ut värdet på RMS och antalet datapunkter i respektive fönster: wrms.text:=' '+FloatToStrF(RMS, ffexponent, 4,2); wpoints.text:=' '+IntToStr(Antal); Avsluta med att provköra programmet på en känd datamängd, t.ex. heltalen och deras kvadrater. Per Nylén - 25 november (5)
Polynomanpassningsprogram
Polynomanpassningsprogram Den här uppgiften skall göra en polynomanpassning av en tvåkolumners tabell enligt minstakvadrat-kriteriet och presentera resultatet grafiskt. Uppgiften skall lösas både med skaläralgebra
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merMer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem
Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem Texter (strängar) i MATLAB skrivs omgivna av '' och behandlas som vektorer, med samma operationer: text = 'iss'; disp(['m' text
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs mer1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
Läs merIntroduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs mer8.5 Minstakvadratmetoden
8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merMATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.
Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik
Läs merIdiotens guide till. Håkan Lyckeborgs SPSS-föreläsning 4/12 2008. Av: Markus Ederwall, 21488
Idiotens guide till Håkan Lyckeborgs SPSS-föreläsning 4/12 2008 Av: Markus Ederwall, 21488 1. Starta SPSS! 2. Hitta din datamängd på Kurs 601\downloads\datamängd A på studentwebben 3. När du hittat datamängden
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merFK2005 Datorövning 3
FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att
Läs merx 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden
24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,
Läs merVane-Log. Loggningsprogram för Geotechs El-vinginstrument. Ingenjörsfirman Geotech AB Datavägen 53 436 32 ASKIM (Göteborg)
Vane-Log Loggningsprogram för Geotechs El-vinginstrument Ingenjörsfirman Geotech AB Datavägen 53 436 32 ASKIM (Göteborg) Tel: 031-28 99 20 Fax: 031-68 16 39 E-post: support@geotech.se Hemsida: http://www.geotech.se
Läs merDeterminanter, egenvectorer, egenvärden.
Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a
Läs merMinimanual CASIO fx-9750gii
Minimanual CASIO fx-9750gii Vanliga beräkningar Vanliga beräkningar görs som vanligt, fast du trycker EXE istället för lika med. Innehåll 3 maj 2017 1 Skriver du fel i en beräkning kan du radera med DEL.
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Läs merLägg märke till skillnaden, man ser det tydligare om man ritar kurvorna.
Matlabövningar 1 Börja med att läsa igenom kapitel 2.1 2 i läroboken och lär dig att starta och avsluta Matlab. Starta sedan Matlab. Vi övar inte på de olika fönstren nu utan återkommer till det senare.
Läs merDN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2008-10-31 DN1212/numpm Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna hantera vektorer och matriser, villkorssatser
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merMinstakvadratmetoden
Institutionen för matematik KTH Minstakvadratmetoden Komplettering till den linjära algebran i kursen 5B6 b A b o A o V Eike Petermann/HT Man ville bestämma ett approimativt värde på tyngdaccelerationen
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merLaboration Fuzzy Logic
BILAGA B Laboration Fuzzy Logic Lär dig simulera ett program! ABB INDUSTRIGYMNASIUM Fuzzy Logic Wikingsons Wåghalsiga Wargar Projekt ABB VT 2006 Västerås Innehåll 1 Introduktion... 3 2 Uppgiften... 3 2.1
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Läs merLaboration: Grunderna i MATLAB
Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 3. Avbrott och Funktioner 1 Repetionssatsen while Uppgift 1.1 Skriv ett program som skriver ut det minsta tal av formen 3 n som är större än 5000.
Läs merInledning till OpenOffice Calculator Datorlära 2 FK2005
Inledning till OpenOffice Calculator Datorlära 2 FK2005 Mål Lära sig att skapa och använda ett räkneblad med OpenOffice Calculator Beräkna medelvärde och standardavvikelsen med räknebladet Producera en
Läs merMinsta-kvadratmetoden
CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla
Läs merRapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merVariabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Läs merNumeriska metoder och grundläggande programmering för T1
Laborationer i Numeriska metoder och grundläggande programmering för T1 hösten 2009-våren 2010 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Läs merDN1212/numpp Numeriska metoder och grundläggande programmering Laboration 1 Introduktion
Staffan Romberger 2011-12-19 DN1212/numpp Numeriska metoder och grundläggande programmering Laboration 1 Introduktion Efter den här laborationen ska du kunna använda de datorer som vi använder på labbarna,
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:
Läs merOH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0
OH till Föreläsning 5, Numme K2, 181119 S Ch 3-34, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 3822 1910 3982 1920 4281 1930 4302 1940 4042 1950 3922 1960 3921 1970 3940 1980 3960 1990 3980
Läs merNUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Läs merMatriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1
Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1
Läs merNovember 6, { b1 = k a
Fö 7: November 6, 2018 Linjära ekvationssystem Inledande exempel: Finn ekv för linjen L som går genom punkterna P a 1, b 1 och Qa 2, b 2 sådana att a 1 a 2. Lsg: Linjen L kan beskrivas av ekv y = k x +
Läs merMoment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61
Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska
Läs merSF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014
SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merMMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
Läs merDatorövning 1 Calc i OpenOffice 1
Datorövning 1 Calc i OpenOffice 1 1 OpenOffice Calc Till förmån för de som följer kursen Fysikexperiment för lärare skall vi här gå igenom några få exempel på hur OO Calc (motsvarar MS Excel) kan användas
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Läs merRäknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b
Räknarinstruktioner för CASIO FX-9750GII till Matematik Origo 3b Sidan 19 Lös ekvationen grafiskt. Genom att rita upp vänster- och högerled i samma koordinatsystem, så kan vi lösa uppgiften grafiskt. Vi
Läs mer15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Läs merGrafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)
Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade
Läs merNumeriska metoder och grundläggande programmering för P1 och T1
Laborationer i Numeriska metoder och grundläggande programmering för P1 och T1 våren 2008 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar Godkänt
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 22 Mars, 2016 Provkod: TEN1 Hjälpmedel:
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
Läs mer% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
Läs merDagens föreläsning (F15)
Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift
Läs merMMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
Läs mer5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
Läs merEkvationer och olikheter
Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Läs merAlgoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merLabb i Datorsystemteknik och programvaruteknik Programmering av kalkylator i Visual Basic
Labb i Datorsystemteknik och programvaruteknik Programmering av kalkylator i Visual Basic Inledning Starta Microsoft Visual Studio 2005. Välj create Project Välj VB + Vindows Application och välj ett nytt
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Läs merDatalogi, grundkurs 1. Lösningsförslag till tentamen
Datalogi, grundkurs 1 Lösningsförslag till tentamen 10 december 2008 1. a. Man testar med typiska värden, gränsvärden och värden utanför specificerad indatavärdemängd. Helst med alla permutationer av
Läs merTentamen i Programmering
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Tentamen i Programmering EDAA65/EDA501/EDAA20 M MD W BK L 2018 05 30, 8.00 13.00 Preliminärt ger uppgifterna 7 + 14 + 6 + 9 + 4 = 40 poäng.
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merDagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
Läs merAlgoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Läs merMäta rakhet Scanning med M7005
Matematikföretaget jz M7005.metem.se 141121/150411/150704/SJn Mäta rakhet Scanning med M7005 Mätgivare Detalj Mäta rakhet - Scanning 1 (12) Innehåll 1 Ett exempel... 3 2 Beskrivning... 6 2.1 Scanna in
Läs merDiagramritning med Excel och figurritning med Word
1(11) Inför fysiklaborationerna Diagramritning med Excel och figurritning med Word Del 1. Uppgift: Excel Målet med denna del är att du skall lära dig grunderna i Excel. Du bör kunna så mycket att du kan
Läs merTMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
Läs merDatainsamling över Internet
Datainsamling över Internet I den här uppgiften skall du styra ett mätförlopp och hämta mätdata via internet. Från en dator skall du styra en annan dator och beordra den att utföra en mätning och skicka
Läs mer3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.
Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%
Läs merIntroduktion till Word och Excel. 14 september 2008
Introduktion till Word och Excel 14 september 2008 1 Innehåll 1 Inledning 3 2 Word 3 2.1 Uppgift................................ 3 2.2 Instruktioner............................. 3 2.2.1 Hämta hem ler.......................
Läs merMatriser och vektorer i Matlab
CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En
Läs merMatematik 3 Digitala övningar med TI-82 Stats, TI-84 Plus och TI-Nspire CAS
Matematik 3 Digitala övningar med TI-8 Stats, TI-84 Plus och TI-Nspire CAS Matematik 3 digitala övningar med TI-8 Stat, TI-84 Plus och TI Nspire CAS Vi ger här korta instruktioner där man med fördel kan
Läs merMA2004 Tillämpad Matematik II, 7.5hp,
MA00 Tillämpad Matematik II, 7hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas in!
Läs merASYMPTOT. Horisontal (lodrät) Vertikal (vågrät) Sned och Hål
ASYMPTOT Horisontal (lodrät) Vertikal (vågrät) Sned och Hål Definition av en asymptot En asymptot är en rak linje som agera som en gräns i grafen av en funktion När en funktion har en asymptot (alla funktioner
Läs merLite om räkning med rationella uttryck, 23/10
Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen
Läs merNumeriska metoder och grundläggande programmering för P1
Laborationer i Numeriska metoder och grundläggande programmering för P1 våren 2011 Namn................................... Personnr............................. Lab 1 Introduktion tog timmar Godkänt den....................................(senast
Läs mer2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merSubtraktion. Räkneregler
Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom
Läs merTANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs mer