Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem
|
|
- Daniel Nyström
- för 6 år sedan
- Visningar:
Transkript
1 Mer om texter i MATLAB och om iterativ lösning av linjära ekvationssystem Texter (strängar) i MATLAB skrivs omgivna av '' och behandlas som vektorer, med samma operationer: text = 'iss'; disp(['m' text text 'ipp' text(1)]) ger utskriften Mississippi Ett diagonaltungt linjärt ekvationssystem Ax=b kan skrivas om x = c + M * x, genom division av raderna och högerledet med diagonalelementen. M, iterationsmatrisen, består av de icke-diagonala elementen och har max-normen M < 1 (definitionen av diagonaltung). Iterationmetoden x (n+1) = c + M x (n), med x (0) = c som start, konvergerar med feluppskattningen x (n+1) - x (n) M n c Yngve Sundblad Föreläsning 3 sid.1 SF 1518/19 ht sept.
2 Iterationsmetoden enligt Jacobi och Gauss-Seidel, I MATLAB x (n+1) = c + M x (n), med x (0) = c som start, n ekvationer Jacobi: Komponenterna i x (n+1) beräknas direkt ur komponenterna i x (n) Gauss-Seidel: Komponenterna i x (n+1) beräknas ur de komponenter i x (n+1) som redan beräknats, i övrigt ur komponenter i x (n) MATLAB, utgående från matrisen M, vektorn c, felgränsen err : % Jacobi % Gauss-Seidel diffx = norm(c,inf) diffx = norm(c,inf); x=c; iter=0; x=c; iter=0; n=rank(m); while diffx >= err while diffx >= err xold = x; iter = iter+1; xold = x; iter = iter+1; x = c + M*x; for i=1:n x(i) = c(i) + M(i,:)*x; end diffx=norm(x-xold,inf) diffx=norm(x-xold,inf) end end disp( Lösning: ); disp(x); disp( Lösning: ); disp(x); disp( Varv: ); disp(iter); disp( Varv: ); disp(iter); OBS! norm(c,inf) ger maxnorm. norm(c,inf) går lika bra. Yngve Sundblad Föreläsning 3 sid.2 SF 1518/19 ht sept.
3 Jacobi och Gauss-Seidel på exempel 3.6 A=[ ; ; ; ], b=[ ]' Efter byte av rader till diagonaltung och division med diagonalelementen och överflyttning av icke-diagonala: M=[ ; ; ; ] c=[ ]' Resulterande normer med err= : Iteration Jacobi Gauss-Seidel 1 0,8 0,74 2 0,06 0, ,02 0, ,0036 0, , , , , , , Gauss-Seidel vinner klart i längden (men t.o.m. sämre i början), extra decimal efter 6, Jacobi kräver 8 iterationer Yngve Sundblad Föreläsning 3 sid.3 SF 1518/19 ht sept.
4 Minstakvadratmetoden Ett vanligt problem i vetenskap och teknik är att man har ett antal mätdata och vill anpassa en funktion / kurva till dessa. Om man har lika många parametrar som data kan man interpolera, vi återkommer till detta, men oftast har man fler data än parametrar och vill anpassa med funktionen / kurvan. Man ska alltså hantera ett överbestämt ekvationssystem. Med minstakvadratmetoden anpassar man så att summan av kvadraterna av avvikelserna mellan funktionsvärdena och mätpunkterna minimeras. Om mätvärdena är (y 1 för x 1 ), (y 2 för x 2 ), (y n för x n ) ska alltså funktionen y = f(x) anpassas så att k r k 2 = k (y k - f(x k )) 2 minimeras Yngve Sundblad Föreläsning 3 sid.4 SF 1518/19 ht sept.
5 Linjär minstakvadratanpassning 1 Ofta vill man anpassa till en linjär kombination av basfunktioner som en rät linje, ett högregradspolynom eller ett uttryck som kan omformas till detta (t.ex. genom logaritmering). Låt oss titta på fallet med två basfunktioner, f 1 (x), f 2 (x) : y= F(x) = c 1 f 1 (x)+ c 2 f 2 (x) ska anpassas till (y 1,x 1 ),(y 2,x 2 ), (y n, x n ) så att k r k 2 = k (c 1 f 1 (x k ) + c 2 f 2 (x k ) - y k ) 2 minimeras Då gäller om F = [ f 1 f 2 ] c att F y och att vi vill finna c så att y F 2 ( kvadratsumman) minimeras Geometriskt: f 1 f 2 F y För att längden av y F ska vara så liten som möjligt måste den vara ortogonal (vinkelrät) mot F, dvs både mot f 1 och f 2, som är kolumnerna i systemmatrisen: A T (y F)=0, A T (y Ac)=0, A T Ac=A T y Normalekvationerna Yngve Sundblad Föreläsning 3 sid.5 SF 1518/19 ht sept.
6 Linjär minstakvadratanpassning 2 rät linje Analogt kan man, med mer skrivarbete, visa att det allmänt gäller för linjär minstakvadratanpassning med godtyckligt många basfunktioner, Ac = y, att bästa lösningen (koefficenterna) ges av normalekvationerna A T Ac = A T y I MATLAB finns inbyggt att för ett överbestämt linjärt ekvationssystem Ac = y ger c=a\y minstakvadratlösningen. Exempel 1(Pohl): Upphettad stång från T=20 grader, uppmätt längdökning (y): T=[ ]' y=[ ]' Anpassa till linjen y = c 1 + c 2 T: A=[ ; ]' N=A *A=[7 350; ]; z=a *y=[ ]' c=n\z ger [ ]; c=a\y ger samma. Residualvektorn: r=y-ac: 0.01*[ ] Yngve Sundblad Föreläsning 3 sid.6 SF 1518/19 ht sept.
7 Linjär minstakvadratanpassning 3 sönderfall Exempel 2 (NAM (Eriksson)): Radioaktivt sönderfall: t=[0:500:3000]' x=[ ]' Anpassa till produktfunktionen x(t) = x0 exp(-kt) Logaritmera: y = ln x = ln x0 kt = c 1 + c 2 t MATLAB (med vektorerna t och x ovan): y = log(x); A=[ones(size(t)) t]; c=a\y; x0 = exp(c(1)) ger 0,1006 k = -c(2) ger 0,00025 (halveringstid ln2/k = 2772 sek, rimligt) xanp=x0*exp(-k*t) ger [ ]' residual = x-xanp ger 1e-4*[ ]' Yngve Sundblad Föreläsning 3 sid.7 SF 1518/19 ht sept.
8 Plottning av anpassad kurva och avvikelser subplot(2,1,1); plot(t,x, *,t,xanp); subplot(2,1,2); plot(t,residual); Yngve Sundblad Föreläsning 3 sid.8 SF 1518/19 ht sept.
9 Linjär minstakvadratanpassning 4 planetbanor (Kepler) Exempel 4.15 (EXS): Planetbanor (solavstånd R i jordradier, omloppstid T i år): Merkurius (0,39 0,24) Venus (0,72 0,62) Mars (1,52 1,88) Jupiter(5, ) Saturnus (9,50 29,5) Uranus (19,0 84,0) Anpassa T0 och q i T = T0 * R q, log(t) = log(t0) + q* log(r) MATLAB: R=[ ]' T=[ ]' y = log(t); A=[ones(6,1) R]; c=a\y; T0 = exp(c(1)); q = c(2); ger T0=1,0008, q=1,5040 r=t-t0*r.^q ger 1e-3*[ ]' r=t-r.^1.5 ger 1e-3*[ ]' Utan Uranus (upptäckt 1781), med Jorden (1, 1): T0=1,0006, q=1,5036 Kepler (1619): Tre lagar för planetrörelse i ellipser, den tredje: T 2 = R 3 eller T = R 1,5 (baserad på beräkningar från Tycho Brahes observationer) Yngve Sundblad Föreläsning 3 sid.9 SF 1518/19 ht sept.
10 Polynomanpassning med minstakvadrat Vid anpassning med polynom av grad n (n 2) till data kan man råka ut för stort konditionstal, dvs små fel i matrisen ger stora fel i resulterande parametrarna. Detta kan kraftigt förbättras genom centrering, dvs välja 1, x-x medel, (x-x medel ) 2, (x-x medel ) 3, som basfunktioner istället för 1, x, x 2, x 3, Exempel 3 (NAM): x=[15:1:19]'; y=[ ]'; Anpassa till y = F(x) = c 1 + c 2 x + c 3 x 2 A=[ ; ; ; ; ] A A = [ ; ; ] A y = [ ]; A\y ger [ ] cond(a *A) ger 3e9 Anpassa till y = F(x) = c 1 + c 2 (x-17) + c 3 (x-17) 2 B=[1-2 4; 1-1 1; 1 0 0; 1 1 1; 1 2 4]; B B=[5 0 10; ; ]; B'y=[ ]'; B\y ger [ ] cond(b'*b) ger 20 Yngve Sundblad Föreläsning 3 sid.10 SF 1518/19 ht sept.
11 Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. yv=polyval(c,xv) ger värdet av polynomet för xv. I vårt exempel 3 med ursprungliga andragradspolynomet c=polyfit(x,y,2)ger[ ]' OBS! Omvänd ordning, högsta koefficienten först, också i c för polyval polyval(c,17) ger , stämmer med (x-17) (x-17)^2 Yngve Sundblad Föreläsning 3 sid.11 SF 1518/19 ht sept.
12 Överkurs I NAM (Eriksson), avsnitt beskrivs för minstakvadratmetoden 2.5 Residualanalys 2.6 Experimentell störningsräkning 2.7 Praktisk statistik Det ingå inte i kursen och kommer inte på tentan, men är läsvärt för speciellt intresserade. Yngve Sundblad Föreläsning 3 sid.12 SF 1518/19 ht sept.
Polynomanpassning i MATLAB
Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. I tredje föreläsningens exempel
Läs merTeorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Läs merNUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Läs mer8.5 Minstakvadratmetoden
8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på
Läs mer1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
Läs merMinstakvadratmetoden
Institutionen för matematik KTH Minstakvadratmetoden Komplettering till den linjära algebran i kursen 5B6 b A b o A o V Eike Petermann/HT Man ville bestämma ett approimativt värde på tyngdaccelerationen
Läs merx 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden
24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs mer% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
Läs merMinsta kvadratmetoden
Minsta kvadratmetoden där Överbestämda ekvationssystem Det är lämpligt att uppfatta matrisen A som bestående av n kolonnvektorer: A a a a n a a a n a n a n a nn a j a j a nj a a a n j n Då kan vi skriva
Läs merAkademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014
MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merVälkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2
Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt
Läs merOrtogonal dekomposition. Minstakvadratmetoden.
Ortogonal dekomposition. Minstakvadratmetoden. Nästa sats är en utvidgning av begreppet ortogonal projektion av en vektor på en annan vektor. Ortogonal projektion på ett underrum. Satsen om ortogonal dekomposition
Läs merNumeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?
Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07
Läs merTANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs merFö4: Kondition och approximation. Andrea Alessandro Ruggiu
TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September
Läs merRapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Läs merPolynomanpassningsprogram
Polynomanpassningsprogram Den här uppgiften skall göra en polynomanpassning av en tvåkolumners tabell enligt minstakvadrat kriteriet och presentera resultatet grafiskt. Uppgiftens tygndpunkt ligger på
Läs merVeckoblad 4, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Läs merEnkel och multipel linjär regression
TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0
Läs mer25 november, 2015, Föreläsning 20. Tillämpad linjär algebra
25 november, 205, Föreläsning 20 Tillämpad linjär algebra Innehåll: Minsta-kvadratmetoden. Minsta kvadratmetoden - motivation Inom teknik och vetenskap arbetar man ofta med modellering av data, dvs att
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merFrån förra gången: Newton-Raphsons metod
Från förra gången: Newton-Raphsons metod Idé: För att hitta en rot till f(x)=0 utgår man från en första Approximation x 0 och använder derivatan för att dra en tangent som skär x-axeln närmare roten och
Läs merMMA132: Laboration 2 Matriser i MATLAB
MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
Läs merLaboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Läs mer2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Läs merSF1624 Algebra och geometri
SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del
Läs merLinjär Algebra och Numerisk Analys TMA 671, Extraexempel
Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att
Läs merSF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs mer15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
Läs merTMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merNumerisk Analys, MMG410. Lecture 8. 1/30
Numerisk Analys, MMG410. Lecture 8. 1/30 Kort om konditionstal för minstakvadratproblem Antag att x och y löser problemen min x Ax b 2 2 resp. min y (A+F)y (b +f) 2 2 y är alltså lösningen till ett stört
Läs merDN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Lördag , kl 9-12 Tentamen i Grundkurs i numeriska metoder Del 1 (av 2)
DN11 mfl. Namn:...Pnr:... DN11+DN11+DN115+DN10+DN11+DN1 mfl Lördag 01-0-0, kl 9-1 Tentamen i Grundkurs i numeriska metoder Del 1 (av ) Skrivtid tim. Inga hjälpmedel. Betygsgräns (inkl bonuspoäng) för betyg
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merIntroduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
Läs mer8 Minsta kvadratmetoden
Nr, april -, Amelia Minsta kvadratmetoden. Ekvationssystem med en lösning, -fallet Ett linjärt ekvationssystem, som ½ +7y = y = har en entydig lösning om koefficientdeterminanten, här 7, är skild från
Läs merFMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
Läs merInstitutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Läs merMinsta-kvadratmetoden
CTH/GU STUDIO b TMV036c - 01/013 Matematiska vetenskaper Minsta-kvadratmetoden Analys och Linjär Algebra, del C, K1/Kf1/Bt1 1 Inledning Ett ofta förekommande problem inom teknik och vetenskap är att koppla
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merSF1624 Algebra och geometri
Föreläsning 6 Institutionen för matematik KTH 11 november 2016 Feedback Innan vi börjar: En liten feedback-övning Vad menas med rangen av en matris? Vad menas med ett homogent linjärt ekvationssystem?
Läs merTentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Läs mer5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
Läs mer1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,
Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +
Läs merLösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Läs mer5.7. Ortogonaliseringsmetoder
5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig
Läs mer. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Läs mer1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
Läs merTentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs merTANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Läs mer1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.
Akademin för teknik och miljö Rolf Källström telefonkontakt med examinator via tentamensvakten Matematiktentamen Ingenjörer, lärare, m fl Linjär algebra maa. 5 6 Skrivtid: 9... Inga hjälpmedel. Lösningarna
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:
Läs merSyftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli
Läs merBeräkning av integraler
Beräkning av integraler a b f(x) dx = {ytan mellan kurvan och x-axeln från a till b} Många tekniska beräkningsproblem kan formuleras som integraler. En del integraler kan beräknas exakt men flertalet kan
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merLösningsförslag till tentamensskrivningen i Numerisk analys
Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med
Läs merDN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12
DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):
Läs merModul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merDN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
Läs merSF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Läs merFöreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
Läs merLösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];
Läs merTentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merTentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merTANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 2. Linjär algebra Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Läs merMoment Viktiga exempel Övningsuppgifter
Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång.
Läs merKonvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
Läs mer1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Läs merTentamen i Beräkningsvetenskap I, DV, 5.0 hp, OBS: Kurskod 1TD394
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I, DV, 5.0 hp, 2011-03-08 OBS: Kurskod 1TD394 Skrivtid: 08 00 11 00 (OBS! Tre timmars skrivtid!)
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merIndex. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Läs merInterpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
Läs merLaboration 2. Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. x = 1±0.01, y = 2±0.05.
Laboration 2 Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. 1 Störningsräkning 1 Betrakta funktionen f(x,y) = e yx2. Värdena på x och y är givna av x =
Läs merSF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
Läs merTentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Läs merNUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs merLinjär algebra med tillämpningar, lab 1
Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt
Läs merSF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Läs merTentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 010-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
Läs merNovember 6, { b1 = k a
Fö 7: November 6, 2018 Linjära ekvationssystem Inledande exempel: Finn ekv för linjen L som går genom punkterna P a 1, b 1 och Qa 2, b 2 sådana att a 1 a 2. Lsg: Linjen L kan beskrivas av ekv y = k x +
Läs merSF1624 Algebra och geometri
Föreläsning 10 Institutionen för matematik KTH 21 november 2016 Dagens och veckans ämnen Idag: Allmänna vektorrum, baser, koordinater, kap 4.1-4.4: Vektorrum och delrum, igen Bas, igen Koordinater med
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merMMA132: Laboration 1 & 2 Introduktion till MATLAB
MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med
Läs merVariabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Läs merSF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016
SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del
Läs mer