OH till Föreläsning 5, Numme K2, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation. Läsa mellan raderna. Allmän polynom-interpolation
|
|
- Ingemar Lindqvist
- för 8 år sedan
- Visningar:
Transkript
1 OH till Föreläsning 5, Numme K, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y Läsa mellan raderna Allmän polynom-interpolation Välj ett lämpligt gradtal till polynomet och välj ut nödvändigt antal tabellvärden (eller tag alla tabellvärdena och låt gradtalet bestämmasav det) Bestäm sedan polynomets koefficienter genom att låta polynomet gå igenom de utvalda tabellvärdena, p(x i )=y i Linjär interpolation, GNM sid (5) - GKN sid 14ff Sökt värde är y(195) Linjär interpolation (approximation med en rät linje) kräver två givna punkter 195 ligger mellan 190 och 190: y = kx+ m y 1 = kx 1 + m y = kx + m 481 = k m 40 = k m k =1 m = 49 y(195) = k m = = = = = 4915 Kvadratisk interpolation, GNM sid (5) Sökt värde är y(195) Kvadratisk interpolation (approximation med ett andragradspolynom) kräver tre givna punkter eftersom ett andragradspolynom har tre koefficienter 195 ligger mellan 190 och 190, jag väljer x 1 = 190, x = 190 och x = 1940: y = c 1 + c x + c x y 1 = c 1 + c x 1 + c x 1 y = c 1 + c x + c x y = c 1 + c x + c x 481 = c 1 + c c = c 1 + c c = c 1 + c c 1940 c 1 = c = c = 1405 y(195) = c 1 + c c 195 = ( 1405) 195 = = = A = = = κ (A) = ligger lika långt från 195 som 1910 Hade jag valt x 1 = 190, x = 190 och x = 1910 hade jag fått c 1 = , c = 556 ochc = 19 vilket ger y(195) = c 1 + c c 195 = = ( 19) 195 = = 465 Nya koefficienter och ett lite annat svar! 1
2 Kvadratisk interpolation med centrering Med x 1 = 190, x = 190 och x = 1940 kan jag centrera kring medelvärdet m = 190 y = c 1 + c (x m)+c (x m) 481 = c 1 + c ( ) + c ( ) 40 = c 1 + c ( ) + c ( ) 404 = c 1 + c ( ) + c ( ) c 1 = 40 c = 1195 c = 1405 y(195) = c 1 + c ( ) + c ( ) = = 40 + ( 1195) ( ) + ( 1405) ( ) = = ( ) A = ( ) = = κ (A) = ( ) Hade jag valt x 1 = 190, x = 190, x = 1910 och m = 190 hade jag fått c 1 = 481, c =16och c = 19 vilket ger y(195) = c 1 + c ( ) + c ( ) = ( ) + ( 19) ( ) = = 465 Nya koefficienter (förutom högstagradskoefficienten) men samma svar! (Numreringen av x i spelar här ingen roll Vi hade fått exakt samma koefficienter om vi hade tagit tex x 1 = 1910, x = 190 och x = 190) Oavsett vilka punkter jag valt får jag mycket snällare siffror vid centrerad än naiv ansats! Kvadratisk interpolation med Newtons ansats, GNM sid (5)4 - GKN sid15 Ett alternativ till centrering är Newtons fiffiga ansats Koefficienterna bestämssom vanligt med p(x i )=y i Med x 1 = 190, x = 190 och x = 1940 (och y 1 = 481, y = 40 och y = 404) får jag p(x) =c 1 + c (x x 1 )+c (x x 1 )(x x ) p(x) =c 1 + c (x 190) + c (x 190) (x 190) 481 = c 1 + c ( ) + c ( ) ( ) = c 1 40 = c 1 + c ( ) + c ( ) ( ) = c 1 +10c 404 = c 1 + c ( ) + c ( ) ( ) = c 1 +0c + 00 c c 1 = 481 c =1 c = 1405 y(195) = c 1 + c ( ) + c ( ) ( ) = = ( 1405) 5 ( 5) = = 4665 A = Lättlöst ekvationssystem = κ (A) =0 10 Lågt konditionstal Återanvändbara koefficienter Hade jag valt x 1 = 190, x = 190, x = 1910 och Newtonsansatshade jag fått p(x) =c 1 + c (x x 1 )+c (x x 1 )(x x ) p(x) =c 1 + c (x 190) + c (x 190) (x 190) 481 = c 1 + c ( ) + c ( ) ( ) = c 1 40 = c 1 + c ( ) + c ( ) ( ) = c 1 +10c 98 = c 1 + c ( ) + c ( ) ( ) = c 1 10 c + 00 c c 1 = 481 c =1 c = 19 y(195) = c 1 + c ( ) + c ( ) ( ) = = ( 19) 5 ( 5) = = 465
3 Eftersom de två första punkterna i ansatsen var desamma blev ekvationerna likadana och koefficienterna därmed oförändrade Från och med den nya punkten får man nya koefficienter Dock är högstagradskoefficienten förstås densamma som vid naiva och centrerade ansatsen och vi känner igen svaret (Numreringen av x i påverkar koefficienternasvärden men inte polynomets!) Hur bra är resultatet?, GNM sid (5)6-7, GKN sid 16 E trunk = Skillnaden mellan beräknat polynomvärde och rätta värdet Skillnaden mellan beräknat värde och det man får om man ökar gradtalet med ett första försummade termen i Newtons ansats (Inte vid naiv och centrerad ansats!) Specialfall : vid linjär IP i ekvidistant tabell blir E trunk max y /8 vid kvadratisk IP i ekvidistant tabell blir E trunk max y /15 E tab E y, dvsfelgränsen i de givna tabellvärdena Exempel : vid linjär IP blir E tab = E y, vid kvadratisk IP blir E tab =5/4E y Vårt exempel: Med linjär IP fick vi y(195) = 4915 och med kvadratisk IP fick vi y(195) = 4665 Trunkeringsfelets gränsvid linjär IP skattas då till E trunk = =515 och osäkerheten pga fortplantade fel i indata till E tab =1 E y =05 Gränsen för beräkningsfelet är svårskattad men klart mindre om vi använt Newtonseller centrerad ansatsän den naiva Eftersom trunkeringsfelets gränsär mycket större än tabelleringsfelets lönar det sig att öka gradtalet hos interpolationspolynomet Runges fenomen, GNM sid (5)9 - GKN sid 19 Polynom av hög grad, speciellt vid ekvidistanta data, kan få kraftigasvängningar i ytterområdena x 1 y 1 k 1 x y k x y k Styckvis interpolation, GKN sid 140 Olika polynom mellan varje punktpar Ett tredjegradspolynom har fyra koefficienter: p 1 (x) =c 1 +c x+c x +c 4 x, x 1 x x p 1 (x 1 )=y 1 p 1 (x )=y p 1 (x 1)=k 1 p 1 (x )=k p (x) =b 1 +b x+b x +b 4 x, x x x p (x )=y p (x )=y p (x )=k p (x )=k Hermites interpolationsformel, GNM sid (5)10 & (5)0 - GKN sid 141 & 171! h i = x i+1 x i c i =(y i+1 y i )/(x i+1 x i ) P (x) =y i + c i (x x i )+ +(x x i )(x x i+1 )((k i+1 c i )(x x i )+(k i c i )(x x i+1 )) /h i Önskas y(4) blir det x i = y i =4 k i =1 x i+1 =5 y i+1 = k i+1 = 1 = c i =( 4)/(5 ) = 1
4 Skattningen blir y (x =4): P (4) = 4 + ( 1) (4 ) + (4 )(4 5)((( 1) ( 1))(4 ) + (1 ( 1))(4 5))/( )=184 Vill man skatta y (x =): P () = 4 + ( 1) ( ) + ( )( 5)((( 1) ( 1))( ) + (1 ( 1))( 5))/( )=414 Vill man skatta y(5) måste man beräkna nya värden på h och c eftersom x =5 ligger i nästa intervall Styckvis interpolation - splines, GNM sid (5)1 - GKN sid 14 x y p 1 (x) =a 1 + a x + a x + a 4 x x 1 y 1 p (x) =b 1 + b x + b x + b 4 x 16 sökta x y x y p (x) =c 1 + c x + c x + c 4 x koefficienter! x 4 y 4 p x x x x x 4 (x) =d 1 + d x + d x + d 4 x x 5 y 5 Givna värden på funktionen i mätpunkterna och kontinuerlig första- och andraderivata ger villkoren p 1 (x 1 )=y 1 p 1 (x )=y p (x )=y p (x )=y p (x )=y p (x 4 )=y 4 p 4 (x 4 )=y 4 p 4 (x 5 )=y 5 p 1(x )=p (x ) p (x )=p (x ) p (x 4 )=p 4(x 4 ) 1(x )= (x ) (x )= (x ) (x 4 )= 4(x 4 ) = 14 villkor Fattas st! De två felande villkoren får (måste) vi alltid välja själva I naturliga (kubiska) splines gör man valet =0 i ytterkanterna, dvsi exemplet ovan skulle de två extra villkoren bli 1 (x 1)=0och 4 (x 5)=0 Ipraktiken Lös ekvationssystemet nedan för k-värdena och använd sedan dessa k-värden i Hermitesinterpolationsformel h 1 h k h (h + h 1 ) h b 1 k 0 h (h + h ) h b k = b 0 0 h n 1 (h n 1 + h n ) h n k n b n h n 1 h n 1 y 1 om i =1 h där b i = i 1 h i y i + hi h i 1 y i 1 om i =,,,n 1 om i = n y n 1 Styckvis interpolation - nästan splines? Om man vill slippa lösa ekvationssystemet ovan kan man skatta derivatorna med följande formler där N är antalet givna punkter (Detta betyder dock att andraderivatan inte blir kontinuerlig) ( ) ( ) ( ) ( ) ( ) y y 1 y y 1 yi+1 y i 1 yn y N 1 yn y N k 1 = k i = i =,,N 1 k N = x x 1 x x 1 x i+1 x i 1 x N x N 1 x N x N 4 c 014 Ninni Carlsund Levin
5 Grad Grad Grad Så här blev det utan centrering! Grad Grad 8 Grad 9 Grad Grad Grad Hermites gamla interpolationsformel, GNM sid (5)10 (Användsibland i EXS och extentor) h i = x i+1 x i y i = y i+1 y i g i = h i k i y i c i = y i h i (k i + k i+1 ) Såför valfritt t [0, 1] kan vi beräkna x = x i + th i y = y i + t y i + t (1 t) g i + t (1 t) c i Önskas y(4) blir det h =5 = y = 4= g = 1 ( ) = 4 c = ( ) (1+( 1)) = 4 Vill man skatta y (x =4) : t =(x x i )/h i =(4 )/ =06 y =4+06 ( ) + 06 (1 06) (1 06) ( 4) = 184 Vill man skatta y (x =) : t =(x x i )/h i =( )/ =01 y =4+01 ( ) + 01 (1 01) (1 01) ( 4) = 414 Vill man skatta y(5) måste man beräkna nya värden på h, y, g och c eftersom x =5 ligger i nästa intervall c 014 Ninni Carlsund Levin 5
OH till Föreläsning 5, Numme K2, Läsa mellan raderna. Allmän polynom-interpolation, S Ch 3.1.0
OH till Föreläsning 5, Numme K2, 181119 S Ch 3-34, GNM Kap 4-44A / GKN Kap 41A,(D),E Interpolation x y 1900 3822 1910 3982 1920 4281 1930 4302 1940 4042 1950 3922 1960 3921 1970 3940 1980 3960 1990 3980
Läs merInterpolation Modellfunktioner som satisfierar givna punkter
Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation
Läs merInterpolation. 8 december 2014 Sida 1 / 20
TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.
Läs merFöreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
Läs merOH till Föreläsning 15, Numme K2, God programmeringsteknik
OH till Föreläsning 15, Numme K2, 180227 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras?) - Bestäm algoritm (och lagrings-struktur) - Dela upp
Läs merKurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab
Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr
Läs merPolynomanpassning i MATLAB
Polynomanpassning i MATLAB Funktionsanropet c=polyfit(x,y,n) ger koefficiemterna i ett n:e-gradspolynom som anpassar sig till y-värdena för x-värdena med lämplig metod. I tredje föreläsningens exempel
Läs merOH till Föreläsning 14, Numme I2, God programmeringsteknik
OH till Föreläsning 4, Numme I2, 722 Hela boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet (VAD skall göras? - Bestäm algoritm (och lagrings-struktur - Dela upp i små
Läs merOH till Föreläsning 12, NumMet O1, God programmeringsteknik
OH till Föreläsning 2, NumMet O, 40303 Hela GKN-boken & hela kursen! God programmeringsteknik Tänk efter före: - Definiera problemet VAD skall göras? -Bestäm algoritm och lagrings-struktur - Dela upp i
Läs merNumerisk Analys, MMG410. Lecture 12. 1/24
Numerisk Analys, MMG410. Lecture 12. 1/24 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Läs merNUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden
NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett
Läs merNumerisk Analys, MMG410. Lecture 13. 1/58
Numerisk Analys, MMG410. Lecture 13. 1/58 Interpolation För i tiden gällde räknesticka och tabeller. Beräkna 1.244 givet en tabel över y = t, y-värdena är givna med fem siffror, och t = 0,0.01,0.02,...,9.99,10.00.
Läs merDel I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Läs merLösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A. 1. (a) ODE-systemet kan skrivas på formen
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-03-18 Del A 1. (a) ODE-systemet kan skrivas på formen z (t) = f(t, z), där z(t) = x(t) y(t) u(t) v(t), f(t, z) = u(t) v(t) kx(t)/ ( x2 (t)
Läs merLAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Läs merTeorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Läs merDenna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
Läs mer0.31 = f(x 2 ) = b 1 + b 2 (x 3 x 1 ) + b 3 (x 3 x 1 )(x 3 x 2 ) = ( ) + b 3 ( )(
Lösningar till Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Del A 1. (a) För att anpassa ett polynom som går genom tre punkter behövs ett andragradspolynom. Newtons interpolationsansats ger f(x)
Läs merSammanfattning (Nummedelen)
DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,
Läs merUppgift 1 R-S. Uppgift 2 R-M. Namn:...
2D121, Numeriska Metoder, Grundkurs för I2+CL2. Laboration 3: Interpolation och integration Sista redovisningsdag för bonuspoäng: måndag 26-3-27 Obs! Muntliga delen redovisas vid ett miniseminarium. Notera!
Läs merTentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Läs merTentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Läs merf(x) = x 2 g(x) = x3 100 h(x) = x 4 x x 2 x 3 100
8 Skissa grafer 8.1 Dagens Teori När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera.
Läs merApproximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning
Läs merFö4: Kondition och approximation. Andrea Alessandro Ruggiu
TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September
Läs merOmtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
Läs mer5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
Läs merTANA09 Föreläsning 8. Kubiska splines. B-Splines. Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.
TANA09 Föreläsning 8 Kubiska splines Approximerande Splines s s s s 4 B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. x x x x 4 x 5 Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor.
Läs mer9 Skissa grafer. 9.1 Dagens Teori
9 Skissa grafer 9.1 Dagens Teori Så här hittar man etrempunkter, ma-, min eller terrasspunkter, till en kurva y = f() med hjälp av i första hand f () 1 Bestäm f () och f () 2 Lös ekvationen f () = 0. Om
Läs merVarning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merMoment 1.15, 2.1, 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3. Polynomekvationer. p 2 (x) = x 7 +1.
Moment.5, 2., 2.4 Viktiga exempel 2.2, 2.3, 2.4 Övningsuppgifter Ö2.2ab, Ö2.3 Ett polynom vilket som helst kan skrivas Polynomekvationer p(x) = a 0 +a x+a 2 x 2 +...+a n x n +a n x n Talen a 0,a,...a n
Läs merf(x) = x 2 g(x) = x3 100
När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer
Läs merCrash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
Läs merDN1212 Numeriska Metoder och Grundläggande Programmering DN1214 Numeriska Metoder för S Lördag , kl 9-12
DN Numeriska Metoder och Grundläggande Programmering DN Numeriska Metoder för S Lördag 007--7, kl 9- Skrivtid tim Maximal poäng 5 + bonuspoäng från årets laborationer (max p) Betygsgänser: för betyg D:
Läs merSidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Läs merIcke-linjära ekvationer
stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar
Läs merGamla tentemensuppgifter
Inte heller idag någon ny teori! Gamla tentemensuppgifter 1 Bestäm det andragradspolynom vars kurva skär x-axeln i x = 3 och x = 1 och y-axeln i y = 3 f(x) = (x 3)(x + 1) = x x 3 är en bra start, men vi
Läs mera = a a a a a a ± ± ± ±500
4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merTANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 3. Interpolation Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur
Läs merTentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Läs merLösningar tentamen i kurs 2D1210,
Lösningar tentamen i kurs 2D1210, 2003-04-26 1. Noggrannhetsordning p innebär att felet går mot noll minst så snabbt som h p då h 0. Taylorurveckling: y(x + h) =y(x)+hy (x)+ h2 2 y (x)+ h3 6 y (x)+...
Läs merLinjär Algebra och Numerisk Analys TMA 671, Extraexempel
Ivar Gustavsson / Jan Södersten Matematiska vetenskaper Göteborg 6 november 9 Linjär Algebra och Numerisk Analys TMA 67, Extraexempel (M) efter uppgiftsnumret anger att MATLAB lämpligen används för att
Läs merNumeriska metoder för fysiker Lördag , kl 10-14
FyL, Num met för fysiker, NADA, KTH/SU, Ninni Carlsund 8--9 Numeriska metoder för fysiker Lördag 8--9, kl -4 Skrivtid 4 tim Maximal poäng 35 + bonuspoäng från årets laborationer (max 4p) Betygsgänser:
Läs merFöreläsning 8, Numme i2,
SF545, Numeriska Metoder, I, HT0, Ninni Carlsund Levin, Föreläsning 8 Föreläsning 8, Numme i, 0 GKN Kap - Differentialekvationer GNM kap 7-7), S Ch Dagens termer Riktningsfält Standardform Begynnelsevärdesproblem
Läs merFrågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 471 2986 Ken Mattsson, tel 471 2975 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2015-06-02 Skrivtid: 14
Läs merDagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Övningsuppgifter.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Ett polynom vilket som helst kan skrivas
Läs merLaboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Läs mer8.5 Minstakvadratmetoden
8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Stefan Engblom, tel. 471 27 54, Per Lötstedt, tel. 471 29 72 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Skrivtid:
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om
Läs merSF1625 Envariabelanalys
Föreläsning 11-12 Institutionen för matematik KTH 21-23 september 2016 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel (men inte bara) hastighet.
Läs merKurvor och ytor. Gustav Taxén
Kurvor och ytor Gustav Taxén gustavt@csc.kth.se 2D1640 Grafik och Interaktionsprogrammering VT 2007 Kurvor och ytor Explicit form Implicit form Parametrisk form Procedurbaserade Polynom Catmull-Clark Kubiska
Läs merKort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!
Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat
Läs merFler uppgifter på andragradsfunktioner
Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har
Läs merPolynomekvationer (Algebraiska ekvationer)
Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har
Läs merSF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
Läs merLinjära differentialekvationer av andra ordningen
Linjära differentialekvationer av andra ordningen Matematik Breddning 3.2 Definition: En differentialekvation av typen y (x) + a(x)y (x) + b(x)y(x) = h(x) (1) där a(x), b(x) och h(x) är givna kontinuerliga
Läs merF 4 Ch.4.2-3 Numerisk integration, forts.; Ch.4 Numerisk derivering.
050301 p 1 (10) F 4 Ch.4.2-3 Numerisk integration, forts.; Ch.4 Numerisk derivering. 1. Styckevis polynom: linjär och spline-interpolation; En funktion f representerad i en tabell (x i,f i ), i = 0,...,n,
Läs merRapportexempel, Datorer och datoranvändning
LUNDS TEKNISKA HÖGSKOLA Datorer och datoranvändning Institutionen för datavetenskap 2014/1 Rapportexempel, Datorer och datoranvändning På de följande sidorna finns en (fingerad) laborationsrapport som
Läs merPolynomekvationer. p 2 (x) = x x 3 +2x 10 = 0
Moment.3.,.3.3,.3.5,.3.6, 2.4., 2.4.2 Viktiga exempel.2,.4,.8,.2,.23,.25,.27,.28,.29, 2.23, 2.24 Handräkning.2,.3,.8,.24,.25,.27,.29 ab,.30,.3 ac, 2.29 abc Datorräkning.6-.3 Ett polynom vilket som helst
Läs merTENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Läs merTATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Läs mer1 Addition, subtraktion och multiplikation av (reella) tal
Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b
Läs merEnvariabelanalys 5B1147 MATLAB-laboration Derivator
Envariabelanalys 5B1147 MATLAB-laboration Derivator Sanna Eskelinen eskelinen.sanna@gmail.com Sonja Hiltunen sonya@gmail.com Handledare: Karim Dao Uppgift 15 Problem: Beräkna numeriskt derivatan till arctan
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-01-11 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs mer% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Läs merDN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12
DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!
Läs mer6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Läs merIntervallhalveringsmetoden, GKN sid 73. Sekantmetoden, GKN sid 79
e x sin(x) = 2 Intervallhalveringsmetoden, GKN sid 73 f(x) = 0 = Roten finns x f(x) i intervallet Skrivs Intervallangd ----------------------------------------------------------------------------- 1.0-0.1232
Läs merLösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Läs merInstitutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson
Läs merAnsvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet
FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och
Läs merRepetition kapitel 1, 2, 5 inför prov 2 Ma2 NA17 vt18
Repetition kapitel,, 5 inför prov Ma NA7 vt8 Prov tisdag 5/6 8.00-0.00 Algebra När man adderar eller subtraherar uttryck, så räknar man ihop ensamma siffror för sig, x-termer för sig, och eventuella x
Läs merDN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Lördag , kl 9-12 Tentamen i Grundkurs i numeriska metoder Del 1 (av 2)
DN11 mfl. Namn:...Pnr:... DN11+DN11+DN115+DN10+DN11+DN1 mfl Lördag 01-0-0, kl 9-1 Tentamen i Grundkurs i numeriska metoder Del 1 (av ) Skrivtid tim. Inga hjälpmedel. Betygsgräns (inkl bonuspoäng) för betyg
Läs merSammanfattning av ordinära differentialekvationer
Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer
Läs merLaboration 4: Lineär regression
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och
Läs merModul 4 Tillämpningar av derivata
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,
Läs merf(a + h) = f(a) + f (a)h + f (θ) 2 h2, θ [a, a + h]. = f(a+h) f(a)
Vi skall nu se, hur man kan beräkna numeriska derivator. Antag att vi vill beräkna derivatan av f(x) i en punkt x = a, och att dess Taylor utveckling kring denna punkt är f(a + h) = f(a) + f (a)h + f (θ)
Läs merIcke-linjära ekvationer
stefan@it.uu.se Eempel f ( ) = e + = 5 3 f ( ) = + + 5= f (, y) = cos( ) sin ( ) + y = Kan endast i undantagsfall lösas eakt Kan sakna lösning, ha en lösning, ett visst antal lösningar eller oändligt många
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986, 0702-634722 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2011-01-15 Skrivtid: 14 00 17 00 (OBS!
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
Läs merTeori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 3216) Figur 1:
Teori och teori idag, som igår är det praktik som gäller! 1 (Bokens nr 316) Figur 1: a) Bestäm y som funktion av x genom att utnyttja likformiga trianglar. Se figur 1. b) Ange funktionens definitionsmängd
Läs merx 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Läs merx+2y+3z = 14 x 3y+z = 2 3x+2y 4z = 5
Uppgifter med linjära ekvationssystem Tips för att lösa linjära ekvationssystem Då systemet saknar parametrar ställer man direkt upp totalmatrisen. Detta är endast av administrativa skäl, blir mer lättöverskådligt.
Läs mer2D1210, Numeriska Metoder, GK I för V 2.
Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs merTentamen del 1 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del SF5, 28-3-6, kl 8.-., Numeriska metoder och grundläggande programmering Namn:... Personnummer:... Program och årskurs:... Bonuspoäng. Ange dina bonuspoäng från kursomgången HT7-VT8
Läs merMedan du läser den är det meningen och viktigt att du ska aktivera de celler där det står Mathematicakommandon(i fetstil).
Laboration 1: Interpolation OBS! I denna notebook finns det mesta du behöver för att lösa webworkövningarna. Resten är det meningen att du ska leta reda på genom att söka i documentation centre. Medan
Läs merTAYLORS FORMEL VECKA 4
TAYLORS FORMEL VECKA 4 David Heintz, 20 november 2002 Innehåll 1 1 2 Uppgift 29.7 3 3 Uppgift 31.9 4 1 Av de elementära funktionerna är det polynomen som har den enklaste strukturen. Om f är ett givet
Läs merSF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
Läs merLösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II
Lösningsanvisningar till vissa av de icke obligatoriska workout-uppgifterna i Beräkningsvetenskap II Kurvanpassning 6. A = [1 1; 2 1; 1 2; 2 3; 2 5; 2 4]; v = [30.006; 44.013; 46.006; 76.012; 108.010;
Läs merTANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Läs mer3 differensekvationer med konstanta koefficienter.
Matematiska institutionen Carl-Henrik Fant 17 november 2000 3 differensekvationer med konstanta koefficienter 31 T Med en menar vi en av rella eller komplexa tal varje heltal ges ett reellt eller komplext
Läs merFöreläsning 11, Dimensionering av tidsdiskreta regulatorer
Föreläsning 11, Dimensionering av tidsdiskreta regulatorer KTH 8 februari 2011 1 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4 5 6 2 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars
Läs merTentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap II Tentamen i Beräkningsvetenskap II, 5.0 hp, 2017-05-31 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Läs mer