Fouriers metod, egenfunktionsutvecklingar.
|
|
- Kerstin Gunnarsson
- för 6 år sedan
- Visningar:
Transkript
1 Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem: u t au xx = 0 i 0 < x < L, t > 0 med homogena randvillkor och givna begynnelsevillkor ut au Sök först icke-triviala lösningar av typ u(x, t) = T (t)x(x) till xx = 0 T X at X = 0 T a T = X X = λ T + aλt = 0 X = λx Differentialekvationerna för X resp T kan nu lösas var för sig Ekvationen för X tillsammans med randvillkoren ger diskreta värden på λ, egenvärdena λ k och tillhörande egenfunktioner X k (x) = ϕ k (x) Totalt får man u k (x, t) = c k e aλkt ϕ k (x), För homogena Dirichletvillkor är λ k = k 2 π 2 /L 2 och ϕ k (x) = sin(kπx/l), k =, 2, För homogena Neumannvillkor är λ k = k 2 π 2 /L 2 och ϕ k (x) = cos(kπx/l), k = 0,, Med superposition finner vi fler lösningar u(x, t) = k c ke aλkt ϕ k (x) Konstanterna c k bestäms av begynnelsevillkoren (Oftast med lämplig Fourierserieutveckling) Värmeledning i en begränsad stav med ansatsmetod Detta är en förkortad variant av föregående och används om man vet vilka egenfunktionerna ϕ k är Problem: u t au xx = 0 i 0 < x < L, t > 0 med homogena Dirichlet- eller Neumannvillkor och givna begynnelsevillkor Ansätt då direkt u = u k (t) sin(kπx/l) (Dirichlet) eller u = k= u k (t) cos(kπx/l) (Neumann) Derivera termvis och sätt in i differentialekvationen Detta leder till differentialekvationerna u k (t) + aλ ku k (t) = 0 med lösningarna u k (t) = c k e aλ kt Koefficienterna c k bestäms av begynnelsevillkoret Kommentar: En fördel med denna metod är att den också fungerar för inhomogena differentialekvationer (u t au xx = f(x, t)) Skillnaden är att man får en inhomogen differentialekvation för u k (t), se nedan Samma ansatser fungerar ockå för den endimensionella vågekvation (odämpad k=0
2 u tt c 2 u xx = f(x, t) eller dämpad u tt au t c 2 u xx = f(x, t)) med homogena Dirichlet- eller Neumannvillkor, och för Laplace/Poissons ekvation ( u = f) på en rektangel med homogena Dirichlet- eller Neumannvillkor i x-led Diffusion och värmeledning med homogena randvillkor i operatorform Detta är en vidarutveckling av föregående och kan användas på allmännare differentialekvationer med allmännare homogena randvillkor Med A = (eller en allmännare differentialoperator av Sturm-Liouvilletyp) och D A = u C 2 (Ω) αu + β u = 0} kan värmeledningsproblemet formuleras n ut + aau = f u(x, 0) = g Bestäm först egenfunktioner och egenvärden till A genom att lösa Au = λu, u 0 u D A (Om problemet är välbekant och man redan vet vilka egenfunktionerna är behöver man naturligtvis inte räkna ut dem) Ansätt en lösning u(x, t) = k u k (t)ϕ k (x) Utveckla f och g i egenfunktioner till A Här utnyttjas att dessa är en ortogonal bas i L 2 f(x, t) = k f k ϕ k (x), g(x) = k g k ϕ k (x) Koefficienterna f k och g k beräknas med projektionsformeln t ex f k = (ϕ k f)/(ϕ k ϕ k ) (I fallet med sinus- eller cosinusserier är detta de vanliga formlerna för beräkning av Fourierkoefficienter) Derivera u termvis (använd Aϕ k = λ k ϕ k ), sätt in i värmeledningsekvationen och begynnelsevillkoret Detta leder till följande differentialekvation för u k (t) u k (t) + aλ ku k (t) = f k (t), u k (0) = g k Lösningen kan skrivas som summan av en partikulärlösning u k,part och allmänna homogena lösningen c k e aλ kt Konstanterna c k bestäms av begynnelsevärdet (u k (0) = g k ) Alternativ om f inte beror på t Låt u stat vara en stationär (= tidsoberoende) lösning till diffekvationen och randvillkoren v = u u stat uppfyller då ekvationen t + aav = 0 v v(x, 0) = g u stat
3 Denna löses som ovan, med ansatsen v(x, t) = k v k(t)ϕ k (x), och ger en homogen differentialekvation för v k Totala lösningen är av formen u = u stat + k c ke aλkt ϕ k (x) Här ses att om alla λ k > 0 så u u stat, t (ungefär som e aλt, där λ är det minsta egenvärdet) I detta alternativet kan man alltså direkt utläsa den asymptotiska (= stationära) lösningen u stat I lösningen till det förra alternativet kan man se den stationära lösningen i form av en serie Vågekvationen med homogena randvillkor, begränsat område Med A =, D A = u C 2 (Ω), homogena randvillkor} kan problemet formuleras utt + c 2 Au = 0 u(x, 0) = g(x), u t (x, 0) = h(x) Problemet löses analogt med värmeledningsekvationen Starta med att bestämma egenfunktioner till A Utveckla i dessa u(x, t) = k u k (t)ϕ k (x), g(x) = k g k ϕ k (x), h(x) = k h k ϕ k (x) Insättning i vågekvationen leder till med lösningar av typ u k (t) + c2 λ k u k (t) = 0, u k (0) = g k, u k (0) = h k u k (t) = a k cos c λ k t + b k sin c λ k t om λ k > 0 och u k (t) = a + bt om λ k = 0 a k och b k bestäms av begynnelsevärdena Lösningen blir en överlagring av stående vågor med egenvinkelfrekvenserna ω k = c λ k Svängningen är odämpad och behåller sin form Inhomogena randvillkor Starta med att homogenisera randvillkoren genom att sätta v = u ũ där ũ uppfyller randvillkoren Välj ũ så enkel som möjligt Ofta går det bra med en konstant eller ett första- eller andragradspolynom Dirichlets problem (Behandlas i kommande sammanfattning)
4 Hilbertrum, operatorer, egenfunktioner Ett linjärt rum H är en mängd med addition och multiplikation med skalärer, som följer de vanliga räknelagarna Tex R n och C 2 (Ω) (u v) är skalärprodukt i H om (u λ v + λ 2 v 2 ) = λ (u v ) + λ 2 (u v 2 ) (u v) = (v u) (u u) 0 med likhet u = 0 Speciellt gäller att (u λv) = λ(u v) och (λu v) = λ(u v) Normen av u är u = (u u) Linjära rum med skalärprodukt kallas prehilbertrum eller Hilbertrum om de är fullständiga Ett viktigt exempel på Hilbertrum är L 2 (w, Ω) med skalärprodukten och normen (u v) = Ω ( /2 u(x)v(x)w(x) dx resp u = u(x) 2 w(x) dx) Ω Funktionen w(x) > 0 kallas viktfunktion I prehilbertrum gäller Pythagoras sats: u v = u + v 2 = u 2 + v 2 Schwarz olikhet: (u v) u v med likhet då och endast då u och v är proportionella Triangelolikheten: u + v u + v Ortogonalitet: Funktionerna ϕ k } är parvis ortogonala i pre-hilbertrummet H om (ϕ k ϕ l ) = 0 då k l Om dessutom ϕ k 2 = (ϕ k ϕ k ) = är systemet ortonormerat Projektioner Låt ϕ,, ϕ n vara parvis ortogonala och låt M = [ϕ,, ϕ n ] vara det linjära höljet av ϕ,, ϕ n Projektionen på M av ett godtyckligt u H definieras av P M u = n ρ k (ϕ k u)ϕ k där ρ k = ϕ k 2 = (ϕ k ϕ k ) Minsta-kvadrat-metoden är en följd av projektionssatsen som säger att inf u v M v 2 = u P M u 2, dvs att P M u är det element i M som bäst approximerar u om avvikelsen mäts i norm Med hjälp av Pythagoras sats ses att avvikelsen u P M u 2 = u 2 P M u 2 = u 2 n (ϕ k u) 2 k= ρ k Gram-Schmidts ortogonaliseringsprocess: Ur en linjärt oberoende följd skapas ett ortogonalt system som har samma linjära hölje som den ursprungliga följden
5 Om, x, x 2, ortogonaliseras med skalärprodukten i L 2 (w, Ω) fås olika ortogonalpolynom Med viktsfunktionen w(x) = och intervallet Ω = [, ] fås Legendrepolynomen P n Man brukar dessutom lägga till kravet att P n () = Konvergens i norm: u n u i H u n u 0 Generaliserade Fourierserier Låt u vara ett element i ett pre-hilbertrum H och ϕ k } parvis ortogonala i H, då är c k = ρ k (ϕ k u) de generaliserade Fourierkoefficienterna för u och c kϕ k är den generaliserade Fourierserien för u Det är inte säkert att serien konvergerar mot u Om varje u H kan skrivas u = c ku k (konvergens i norm), så säger man att ϕ k } är en ortogonal bas för H Exempel: e ikπx } är en ortogonal bas i L 2 ([, ]) sin kπx} är en ortogonal bas i L 2 ([0, ]) cos kπx} 0 är en ortogonal bas i L 2 ([0, ]) Legendrepolynomen P k (x)} 0 är en ortogonal bas i L 2 ([, ]) sin kπx sin jπy} j,k= är en ortogonal bas i L 2 (Ω), Ω : 0 x, 0 y Parsevals formel: Om ϕ k } c k 2 ϕ k 2 k Fler kommer i kap S är en ortogonal bas för H och u = c kϕ k så är u 2 = En operator A har egenfunktionen ϕ med egenvärdet λ om Aϕ = λϕ, ϕ 0 En operator A är symmetrisk om (Au v) = (u Av) för alla u, v D A En symmetrisk operator har reella egenvärden och egenfunktioner hörande till olika egenvärden är ortogonala A är positivt semidefinit om (Au u) 0 för alla u D A, då är alla egenvärden 0 Sturm-Liouvilleoperatorerna Au = w ( (pu ) + qu) (w, p > 0, q 0) med homogena randvillkor, av typ αu + β u = 0 (α, β 0, ej båda = 0) på randen Ω, är symmetriska och positivt n semidefinita Dess egenfunktioner bildar en ortogonal bas i L 2 (w, Ω) (Observera viktfunktionen) För att finna en ortogonal bas av egenfunktioner till en operator i flera variabler kan man göra en variabelseparation och ett täthetsresonemang som visar att varje u L 2 (w, Ω) kan approximeras godtyckligt bra med linjärkombinationer av de separerade egenfunktionerna (Se ex H27, S4 och S6 ( Ex 28 i kap H, Ex 3 och Ex 6 i kap S i gamla kompendiet)) Härvid uppkommer några endimensionella differentialekvationer som man måste behärska (I kommande sammanfattning fyller vi på med kopplingar mellan kapitel H och S)
Fouriers metod, egenfunktionsutvecklingar.
Vårterminen 2008 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder Fysikaliska modeller Kontinuitetesekvationen: q t + div j = k kommer från ökning + utöde = nyproduktion. Här är q = densitet (mängd/m
Sammanfattning. Fouriers metod, egenfunktionsutvecklingar. Värmeledning i en begränsad stav med variabelseparation
Sammanfattning Kontinuerliga system vt 2017 Fysikaliska modeller Kontinuitetesekvationen: q t +div j = k kommer från ökning + utflöde = nyproduktion. Här är q = densitet (mängd/m 3 ), j = strömtäthet (mängd/m
KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder. Fysikaliska modeller. Fouriers metod, egenfunktionsutvecklingar.
Vårterminen 00 KONTINUERLIGA SYSTEM, några vitiga begrepp och metoder Fysialisa modeller Kontinuitetesevationen: q t divj ommer från öning + utflöde = nyprodution. Här är q densitet (mängd/m 3 ), j strömtäthet
Lösningar av uppgifter hörande till övning nr 5.
Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
Kontsys F7 Skalärprodukt och normer
Repetition Skalärprodukt Norm Kontsys F7 Skalärprodukt och normer Pelle 11 februari 2019 Linjära rum Repetition Skalärprodukt Norm Linjära rum Linjärt underrum Ett linjärt rum över R är en mängd H där
Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra
Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.
ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål
ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N
ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF Nyckelord och innehåll
ÖVN 11 & 12 DEL B - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Partiella differentialekvationer Separation av variabler Operatorer A definierade
Institutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl
KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.
Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Om ortonormerade baser i oändligtdimensionella rum
Analys 360 En webbaserad analyskurs Funktionsutvecklingar Om ortonormerade baser i oändligtdimensionella rum Anders Källén MatematikCentrum LTH anderskallen@gmail.com Om ortonormerade baser i oändligtdimensionella
Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2
Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.
Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.
KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att
Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier
KAPITEL 5 Introduktion till Sturm-Liouvilleteori och generaliserade Fourierserier Vi inleder med några förberedande exempel. 5.. Cauchys ekvation Den homogena Euler-Cauchys ekvation (Leonhard Euler och
Linjär Algebra, Föreläsning 9
Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd
8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
Del I. Modul 1. Betrakta differentialekvationen
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 24 oktober 2016 kl 8:00-13:00 För godkänt (betyg E) krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För
Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem
Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.
Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning.
Kontinuerliga system vt 2015 Datorövning 2 Inledning Syftet med denna datorövning är att du med hjälp av Maple skall få ökad förståelse av vissa begrepp presenterade i kapitel H. Exempelvis behandlas skalärprodukt,
Egenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
Oändligtdimensionella vektorrum
Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.
Lösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 2) 8 januari 2018
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF169, Differentialekvationer och Transformer II (del ) 8 januari 18 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.
KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I
Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska
6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp
6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden
Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte
= 1, fallet x > 0 behandlas pga villkoret. x:x > 1
Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och
MVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra
Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1)
KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF1629, Differentialekvationer och Transformer II (del 1) 1 a). Lös ekvationen 3p. 3y 2 y +16x = 2xy 3. b). Finn en lösning som är begränsad
1. (4p) Para ihop följande ekvationer med deras riktingsfält. 1. y = 2 + x y 2. y = 2y + x 2 e 2x 3. y = e x + 2y 4. y = 2 sin(x) y
1 Matematiska Institutionen, KTH Tentamen SF1633, Differentialekvationer I, den 18 december 2017 kl 08.00-13.00. Examinator: Pär Kurlberg. Betygsgränser: A: 85%. B: 75%. C: 65%. D: 55%. E: 45%. Fx: 42%.
6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,
Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för
(y 2 xy) dx + x 2 dy = 0 y(e) = e. = 2x + y y = 2x + 3y 2e 3t, = (x 2)(y 1) y = xy 4. = x 5 y 3 y = 2x y 3.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 2 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-01-10 Skrivtid: 8.00 1.00. Hjälpmedel:
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I. Tisdagen den 7 januari 2014, kl
Lösningsförslag till tentamensskrivning i SF1633 Differentialekvationer I Tisdagen den 7 januari 14, kl 8-13 Del 1 Modul 1 Befolkningen i en liten stad växer med en hastighet som är proportionell mot befolkningsmängden
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
} + t { z t -1 - z t (16-8)t t = 4. d dt. (5 + t) da dt. {(5 + t)a} = 4(5 + t) + A = 4(5 + t),
Tentamensskrivning i Matematik IV, 5B110 Måndagen den 1 oktober 005, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är lätta
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning
TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).
Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Tentamen SF1633, Differentialekvationer I, den 23 oktober 2017 kl
Matematiska Institutionen, KTH Tentamen SF633, Differentialekvationer I, den 23 oktober 27 kl 8.- 3.. Examinator: Pär Kurlberg OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. För full poäng krävs
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0
(4 2) vilket ger t f. dy och X = 1 =
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och
Fourierserier: att bryta ner periodiska förlopp
Analys 36 En webbaserad analyskurs Funktionsutvecklingar Fourierserier: att bryta ner periodiska förlopp Anders Källén MatematikCentrum LTH anderskallen@gmail.com Fourierserier: att bryta ner periodiska
dy dx = ex 2y 2x e y.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 018-471 3 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, poäng 005-04-04 Skrivtid: 14 19. Hjälpmedel: Skrivdon,
0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.
Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer
TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både
Teori för linjära ordinära differentialkvationer med konstanta koefficienter
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016/2017 Teori för linjära ordinära differentialkvationer med konstanta koefficienter 1. FÖRSTA ORDNINGEN Homogena fallet. En homogen linjär
Instuderingsfrågor i Funktionsteori
Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
Sammanfattning av Hilbertrumteorin
Sammanfattning av Hilbertrumteorin 9.1 Hilbertrum DEFINITION 9.1 Ett eulidist rum (prehilbertrum, rum med salärprodut, inreprodutrum) är ett lineärt rum försett med en salärprodut x y, och normen definierad
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
SF1625 Envariabelanalys
Föreläsning 9 Institutionen för matematik KTH 16 september 2016 Homogena injära ODE m konst koeff Sist: homogena linjära ODE med konstanta koefficienter. Första ordningens sådan ekvation kan skrivas y
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:
y(0) = e + C e 1 = 1
KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs
1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1
Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,
x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen
Produktlösningar Vi betraktar homogena partiella differentialekvationer (PDE) av andra ordningen u( u( u( u( u( A B C D E 0 (ekv 0) y y y som är definierad på ett (ändligt eller oändlig rektangulär område
Norm och QR-faktorisering
Norm och QR-faktorisering Skalärprodukten på C n (R n ) hänger ihop med några viktiga klasser av matriser. För en komplex matris A betecknar vi med A H det Hermitiska konjugatet till A, dvs A H = A T.
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 16, 2018 9. Lösningar av Poissons ekvation Vi vet att Poissons
Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Innehåll 1. Kapitel 6: Separation of Variables 1
SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,
ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) =
Matematik Chalmer Tentamen i TMA683/TMA682 Tillämpad matematik K2/Bt2, 28 4 4, kl 4:-8: Telefon: Henrik Imberg, 3-772 5325; Kontaktperon: Mohammad Aadzadeh, 3-772 357 Hjälpmedel: Endat tabell på bakidan
A dt = 5 2 da dt + A 100 =
Tentamensskrivning i Matematik IV, F1636(5B11,5B13) Tisdagen den 13 november 7, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang är
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
IV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
Lösningsmetodik för FMAF01: Funktionsteori
Lösningsmetodik för FMAF0: Funktionsteori Johannes Larsson, I2 0 mars 204 Allmänt Detta är lösningsmetoder för de vanligaste tentauppgifterna, grupperade efter hur ofta de kommer på tentan och därmed också
Tillämpningar av komplex analys på spektralteori
Tillämpningar av komple analys på spektralteori Anders Källén, baserat på föreläsningar hösten 1979 av Lars Hörmander MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet härleds
Exempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Webbaserad kurs i differentialekvationer I, SF1656.
Tentamensskrivning i Differentialekvationer I, SF1633(5B1206) Webbaserad kurs i differentialekvationer I, SF1656 Torsdagen den 8 januari 2009, kl 1400-1900 Hjälpmedel: BETA, Mathematics Handbook Redovisa
ÚÚ dxdy = ( 4 - x 2 - y 2 È Î
Lösningsförslag till tentamensskrivning i Matematik IV, 5B0 Måndagen den 0 oktober 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Egenfunktionsutvecklingar
Analys 36 En webbaserad analyskurs Funktionsutvecklingar Egenfunktionsutvecklingar Anders Källén MatematikCentrum LTH anderskallen@gmail.com Egenfunktionsutvecklingar 1 (15) 1 Introduktion I det här kapitlet
SVAR: Det är modell 1 som är rimlig för en avsvalningsprocess. Föremålets temperatur efter lång tid är 20 grader Celsius.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I Onsdagen den maj 03, kl 0800-300 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
1 dy. vilken kan skrivas (y + 3)(y 3) dx =1. Partialbråksuppdelning ger y y 3
Lösningsförslag till tentamensskrivning i Differentialekvationer och transformer III, SF137 Tisdagen den 11 januari 211, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Oct 2, 2017 10. Värmeledning, diffusionsekvation Betrakta ett temperaturfält