2D1240 Numeriska metoder gk II för T2, VT 2004 LABORATION 1. Ekvationslösning
|
|
- Helen Hedlund
- för 6 år sedan
- Visningar:
Transkript
1 1 Olof Runborg NADA 15 januari D1240 Numeriska metoder gk II för T2, VT 2004 A LABORATION 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för teori och algoritmer! Målsättning: Känna igen problemtyperna linjära och olinjära ekvationer, överbestämda linjära ekvationer och minst ett sätt att lösa varje problemtyp, samt kunna uppskatta lösningsnoggrannheten. 1. MÖ-uppgifterna Repetera Matlab. Följ anvisningarna i MÖ-häftet och arbeta igenom så många som möjligt avmö-uppgifterna. Ni kommer att ha stor nytta avdet i fortsättningen! MÖ-uppgifterna behöver dock inte redovisas.) Om ni tycker att det tar alltför lång tid att göra dem, kan ni hoppa över några nu. Men gå i så fall gärna tillbaka och titta på de resterande MÖ-uppgifterna senare! 2. Olinjär skalär ekvation Läsanvisning: 2.2, 2.3 i Quarteroni/Saleri Man vill bestämma samtliga rötter till följande skalära ekvation, x 4 sin 2x) 3=0. Noggrannheten skall vara minst tio korrekta siffror. a) Rita grafen för yx) =x 4 sin 2x) 3 med Matlab). Samtliga nollställen till yx) skall vara med. Hur många rötter finns det? b) Undersök empiriskt och teoretiskt vilka av rötterna som kan bestämmas med följande två metoder: 1) Fixpunktsiterationen x n+1 = sin2x n )+ 5 4 x n 3 4, 2) Newtons metod. Hur vet man att önskad noggrannhet 10 korrekta siffror) uppnåtts och att iterationen kan avbrytas? c) För bägge metoderna och för en konvergerande rot: 1) Bestäm, empiriskt och teoretiskt, konvergenshastigheten. 2) Bestäm, empiriskt och teoretiskt, antalet iterationer som krävs för att få roten med minst tio siffrors noggrannhet. Antag att startgissningen har felet ett.
2 2 3. Illa konditionerat linjärt ekvationsystem Läsanvisning: i Quarteroni/Saleri Studera störningskänsligheten för den så kallade Hilbert-matrisen A n R n n.elementeni A n ges av a ij =1/i + j 1). Närn =4har vi t.ex. 1 1/2 1/3 1/4 A 4 = 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6. 1/4 1/5 1/6 1/7 Konstruera Hilbertmatrisen med hjälp av Matlab-kommandot hilb. LösA n x = b där b bara består avettor, b =1, 1,...,1) T för n =4, 8, 13. Undersök med experimentell störningsräkning störningskänsligheten konditionen) hos respektive beräkning: Lös problemet med stört högerled, b + b. Lösning är då x + x. Beräkna kvoten mellan R ut = x / x och R in = b / b. Upprepa med olika störningar b. Använd den största kvoten som mått på störningskänsligheten konditionstalet). HurstortärKA n ), konditionstalet för matriserna A n? Förklara relationen mellan KA n ) och de experimentellt bestämda konditionstalen. Kan man lita på lösningen x till A 13 x = b? Se också Exempel 5.7 i Quarteroni/Saleri.) 4. Stora matriser Läsanvisning: i Quarteroni/Saleri I många realistiska tillämpningar måste man lösa stora linjära ekvationsystem, med tusentals obekanta. Det är i dessa fall som effektiva algoritmer blir viktiga att använda. Som exempel ska ni här räkna på ett komplicerat fackverk: en modell aveiffeltornet. Ett fackverk består avstänger förenade genom leder i ett antal noder. Ni ska beräkna deformationen av fackverket när noderna belastas av yttre krafter. Ekvationerna för deformationen härleds i hållfastläran, och baseras på att förskjutningarna i varje nod är små, och att Hookes lag gäller för förlängningen avvarje stång. I slutändan får man ett linjärt ekvationssystem på formen Ax = b. När antalet noder i fackverket är N kommer antalet obekanta vara 2N och A R 2N 2N. Matrisen A brukar kallas styvhetsmatrisen. Högerledet b innehåller de givna yttre krafterna som verkar på noderna, b = F x 1,F y 1,Fx 2,F y 2,...,Fx N,F y N ) T, b R 2N, Modellen i eiffel3.mat, med 399 noder 798 obekanta). där F j =Fj x,fy j )T är kraften i nod j. Lösningen x innehåller de resulterande obekanta) förskjutningarna, ) T x = x 1, y 1, x 2, y 2,..., x N, y N, x R 2N. Häräralltså x j, y j ) T förskjutningen avnod j när fackverket belastas med krafterna i b. I kursbiblioteket finns filerna eiffel1.mat, eiffel2.mat, eiffel3.mat och eiffel4.mat. De innehåller fyra olika modeller aveiffeltornet med växande detaljrikedom N = 124, 261, 399, 561). Varje modell består avnodkoordinater i vektorerna xnod, ynod, stångindex i matrisen bars används bara för plottningen) och styvhetsmatrisen A.
3 3 a) Ladda in en avmodellerna i Matlab med kommandot load, för minsta modellen t.ex. load /info/numt04/eiffel1.mat). Kopiera över funktionsfilen trussplot.m från kursbiblioteket och anropa den med trussplotxnod,ynod,bars). för att plotta tornet. Undvik att kopiera.mat-filerna, eftersom de är väldigt stora.) Välj nu en av noderna och belasta den med en kraft rakt högerut med beloppet ett. Sätt Fj x =1för något j, ochrestenav elementen i b lika med noll, dvs i Matlab tex: j=58; b=zeros2*n,1); bj*2-1)=1;) Lös systemet Ax = b med backslash för att få fram förskjutningarna i alla punkter. Beräkna de nya koordinaterna för det belastade tornet, x ny j = x j + x j,etc.: xny = xnod + x1:2:end); yny = ynod + x2:2:end); Plotta det belastade tornet. Använd hold on för att plotta de två tornen ovanpå varandra i samma figur. Markera vilken nod ni valt. b) Backslash-kommandot i Matlab använder normalt vanlig gausseliminering för att lösa ekvationsystemet. Undersök hur tidsåtgången för gausseliminering beror på systemmatrisens storlek genom att lösa ekvationsystemet Ax = b med ett godtyckligt valt högerled b för var och en avde fyra modellerna. Använd Matlab-kommandot cputime. help cputime ger mer info.) För att få bra noggrannhet i mätningen avcpu-tiden speciellt om den är kort) bör man upprepa beräkningarna några gånger och ta medelvärdet. Plotta tidsåtgången mot antal obekanta N i en loglog-plot. Hur ska tidsåtgången bero på N enligt teorin? Stämmer det? c) Ni ska räkna ut i vilka noder fackverket är mest respektive minst känslig för horisontell belastning. Börja med den minsta modellen, eiffel1.mat. Tag en nod i taget. Belasta den med samma kraft som i a) ovan och räkna ut resulterande förskjutningar x. Notera storleken på förskjutningen, dvs x. Fortsätt med nästa nod, etc. Plotta tornet med trussplot och markerademestochminstkänsliganodernaifiguren. Systematisera beräkningarna med en for-slinga i ert Matlab-program, t.ex. dxnorm =[]; for j=1:n b = zeros2*n,1); b2*j-1) = 1; x = A\b; dxnorm = [dxnorm normx)]; % Spara normen av förskjutningen i dxnorm-vektorn end [fmax jmax] = maxdxnorm); % Maximala förskjutningen med index [fmin jmin] = mindxnorm); % Minimala förskjutningen med index trussplotxnod,ynod,bars); hold on plotxnodjmax),ynodjmax), o,xnodjmin),ynodjmin), * ); Ni kommer alltså att behöva lösa samma stora linjära ekvationssystem med många olika högerled N stycken). När matrisen är stor, vilket är fallet för de större modellerna, blir detta mycket tidskrävande. Optimera programmet genom att använda LU-faktorisering av A Matlab-kommandot lu). Uppskatta tidsvinsten av detta. Kan ni köra även de större modellerna? d) När en matris är gles kan betydligt effektivare metoder än vanlig gausseliminering användas för att lösa ekvationsystemet. Använd spya) för att studera styvhetsmatrisens struktur. Vad kan man säga om den? Genom att tala om för Matlab att matrisen är gles kommer bättre metoder automatiskt användas när backslash anropas. Detta kan ni enkelt göra här genom att skriva A=sparseA). Gå igenom beräkningarna i c) igen. Hur stor tidsvinst gör man i detta fall genom att låta Matlab använda metoder för glesa matriser? Prova med och utan LU-faktorisering.
4 4 5. Egenvärden Läsanvisning: ) i Quarteroni/Saleri Förskjutningen i förra uppgiften beskrevjämviktsläget när noderna utsattes för yttre krafter. Allmänt kommer kraften på varje nod vid förskjutningen x ges av F nod = Ax. I det dynamiska tidsberoende) fallet följer x = xt) Newtons andra lag, vilken därför blir F nod = m d2 x dt 2 m d2 x + Ax =0, dt2 där m är en effektivmassa för noderna en liten förenkling avverkligheten). a) Antag att m =1. Visa att om λ, y är ett egenvärde respektive en egenvektor till A, så är xt) =sin t ) λ y, en lösning till differentialekvationen. Egenmoderna till A beskriver alltså de möjliga svängningarna i fackverket. Egenvärdet λ motsvarar svängningens frekvens i kvadrat) och egenvektorn y dess amplitud i varje nod. Den allmänna lösningen till differentialekvationen är en superposition av alla möjliga sådana svängningar: xt) = 2NX k=1 h α k sin t p λ k + β k cos t p i λ k y k, där λ k, y k är egenvärdena/vektorerna till A och α k,β k är konstanter som bestäms av begynnelsedata. b) Välj en avde mindre modellerna och använd Matlab-kommandot eig för att beräkna de fyra lägsta svängningsmoderna, dvs de fyra minsta egenvärdena och motsvarande egenvektorer. eig returnerar inte egenvärdena i storleksordning. Använd därför sort-kommandot på lämpligt sätt för att få fram dem i rätt ordning.) Plotta tornet när noderna är förskjutna med full amplitud och ange frekvensen för var och en av dessa moder. Om inte förskjutningen syns bra, prova att göra egenvektorn längre genom att multiplicera den med ett tal större än ett. Testa att animera svängningsmoderna med scriptet trussanim.m, som går att kopiera från kursbiblioteket. Prova gärna fler moder. c) Ej obligatorisk uppgift.) Beräkna det minsta egenvärdet och motsvarande egenvektor med hjälp avinversa potensmetoden kapitel 6.2 i QS). Hur många iterationer behövs för att få fyra korrekta siffror? Genom att använda LU-faktorisering och metoder för glesa matriser på samma sätt som i förra uppgiften kan man optimera metoden. Kan ni räkna ut det minsta egenvärdet/vektorn även till den största modellen? Skiljer sig dess svängningsmod mycket från den minsta modellen? 6. Ett olinjärt ekvationssystem: Vikter på en lina Läsanvisning: extramaterial Två kulor är fästade på ett snöre som hänger mellan två punkter, A och B. Linjen AB mellan punkterna är horisontell och avståndet mellan punkterna är a. Kulornas massa är m 1 resp m 2. Kulorna delar upp snöret i tre delar med längderna L 1, L 2 och L 3. Uppgiften är att räkna ut vilka vinklar de tre snörena bildar med horisontalplanet samt att rita upp snörets form i en graf.
5 5 A u1 a B L1 m1 L2 u2 m2 u3 L3 Beteckna de tre sökta vinklarna u 1, u 2 och u 3. De uppfyller villkoret π/2 >u 1 u 2 u 3 > π/2 se figuren). Observera att vridning i motsols riktning ger en positiv vinkel. Rent geometriskt gäller de två sambanden: L 1 cos u 1 + L 2 cos u 2 + L 3 cos u 3 = a, L 1 sin u 1 + L 2 sin u 2 + L 3 sin u 3 =0 Dessutom gäller vid jämvikt följande samband: m 2 tan u 1 m 1 + m 2 ) tan u 2 + m 1 tan u 3 =0 De tre sambanden utgör tillsammans ett icke-linjärt ekvationssystem för de tre vinklarna u 1, u 2 och u 3. Lös detta ekvationssystem med Newtons metod för följande värden på parametrarna a =2, L 1 =1, L 2 =1samt L 3,m 1,m 2 enligt tabellen L 3 m 1 m För varje parameteruppsättning skall, förutom svaret i radianer och grader samt grafen, startgissning och mellanresultat som visar konvergensordningen redovisas. Hur många timmar ungefär har den här laborationen tagit? En fråga på kursutvärderingen i slutet av kursen kommer att gälla tidsåtgång och laborationsomfång. Tänk redan nu igenom vad som är bra och vad som kan förbättras! 2D1240, Numeriska metoder gk II Laboration 1 redovisad och godkänd! Datum:... Namn:... Godkänd av...
Laboration 1. Ekvationslösning
Laboration 1 Ekvationslösning Sista dag för bonuspoäng, se kursplanen. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen
Laboration 1. x = 1±0.01, y = 2±0.05. a) Teoretiskt med hjälp av felfortplantningsformeln (Taylor-utveckling).
Laboration 1 Sista dag för bonuspoäng är 18 mars. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat ska finnas noterade. Båda i laborationsgruppen ska kunna redogöra för
Laboration 1. 1 Matlab-repetition. 2 Störningsräkning 1. 3 Störningsräkning 2
Laboration 1 Hela labben måste vara redovisad och godkänd senast 19 november för att generera bonuspoäng till tentan. Kom väl förberedd och med välordnade papper till redovisningen. Numeriska resultat
Laboration 2. Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. x = 1±0.01, y = 2±0.05.
Laboration 2 Laborationen löses i grupper om två och redovisas individuellt genom en lappskrivning den 3/10. 1 Störningsräkning 1 Betrakta funktionen f(x,y) = e yx2. Värdena på x och y är givna av x =
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem
NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering
SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med
LABORATION cos (3x 2 ) dx I =
SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför
2 Matrisfaktorisering och lösning till ekvationssystem
TANA21+22/ 5 juli 2016 LAB 2. LINJÄR ALGEBRA 1 Inledning Lösning av ett linjärt ekvationssystem Ax = b förekommer ofta inom tekniska beräkningar. I laborationen studeras Gauss-elimination med eller utan
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Konvergens för iterativa metoder
Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd
TANA09 Föreläsning 5. Matrisnormer. Störningsteori för Linjära ekvationssystem. Linjära ekvationssystem
TANA9 Föreläsning Matrisnormer Linjära ekvationssystem Matrisnormer. Konditionstalet. Felanalys. Linjära minstakvadratproblem Överbestämda ekvationssystem. Normalekvationerna. Ortogonala matriser. QR faktorisering.
Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?
Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671
Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:
Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)
2D1240, Numeriska metoder gk2 för F2 och CL2 MATLAB-introduktion, minstakvadratmetoden, differensapproximationer,
21 Bengt Lindberg LABORATION 1 070518 2D1240, Numeriska metoder gk2 för F2 och CL2 MATLAB-introduktion, minstakvadratmetoden, differensapproximationer, ekvationslösning Sista dag för bonuspoäng, se kursplanen.
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long
Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];
x 1(t) = x 2 (t) x 2(t) = x 1 (t)
Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och
2D1240 Numeriska metoder gk II för T2, VT Störningsanalys
Olof Runborg ND 10 februari 2004 2D1240 Numeriska metoder gk II för T2, VT 2004 Störningsanalys Indata till ett numeriskt problem innehåller i praktiken alltid (små) fel.felen kan bero på tex mätfel, avrundningsfel
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,
Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv
Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL
Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Standardform för randvärdesproblem
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN8 09-03-30 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN7 (GNM kap 4, 6.3)! Bandmatrismetoden/Finita differensmetoden!
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel
Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer
Egenvärdesproblem för matriser och differentialekvationer
CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.
5B1146 med Matlab. Laborationsr. Laborationsgrupp: Sebastian Johnson Erik Lundberg, Ann-Sofi Åhn ( endst tal1-3
1 Revision 4 2006-12-16 2. SIDFÖRTECKNING 5B1146 med Matlab Laborationsr Laborationsgrupp: Sebastian Johnson, Ann-Sofi Åhn ( endst tal1-3 Titel Sida 1. Uppgift 1.8.1....3 2. Uppgift 1.8.2....6 3. Uppgift
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 2016-05-31, kl 08-11 SF1547+SF1543 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 20 Uppgift 1 Man vill lösa ekvationssystemet
Tentamen, del 2 DN1240 Numeriska metoder gk II för F
Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p
Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 02/03. Laboration 3 4. Elmotor med resonant dämpare
Lennart Edsberg Nada,KTH Mars 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 02/03 Laboration 3 4. Elmotor med resonant dämpare 1 Laboration 3. Differentialekvationer Elmotor med
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Laboration: Vektorer och matriser
Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix
) + γy = 0, y(0) = 1,
Institutionen för Matematik, KTH Tentamen del Numeriska metoder SF545 8.00-.00 / 04 Inga hjälpmedel är tillåtna (ej heller miniräknare). Råd för att undvika poängavdrag: Skriv lösningar med fullständiga
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Fö4: Kondition och approximation. Andrea Alessandro Ruggiu
TANA21/22 HT2018 Fö4: Kondition och approximation Andrea Alessandro Ruggiu Kondition och approximation A.A.Ruggiu 13:e September 2018 1 Konditionstal Kondition och approximation A.A.Ruggiu 13:e September
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
Block 2: Lineära system
Exempel Från labben: Block : Lineära system Del 1 Trampolinens böjning och motsvarande matris (här 6060-matris) Matrisen är ett exempel på - gles matris (huvuddelen av elementen nollor) - bandmatris Från
Fel- och störningsanalys
Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018
Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018 1. Inledning Inom matematiken är det ofta intressant att finna nollställen till en ekvation f(x),
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
TMV166 Linjär Algebra för M. Tentamen
MATEMATISKA VETENSKAPER TMV66 6 Chalmers tekniska högskola 6 8 kl 8:3 :3 (SB Multisal) Examinator: Tony Stillfjord Hjälpmedel: ordlistan från kurshemsidan, ej räknedosa Telefonvakt: Olof Giselsson, ankn
12. SINGULÄRA VÄRDEN. (u Av) u v
. SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor:
1 Axel Ruhe NADA 10 mars 2005 2D1250 Tillämpade numeriska metoder II Läsanvisningar och repetitionsfrågor: Dessa frågor är till hjälp vid inläsning av Linjär Algebra momenten i kursen. Hänvisningar till
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
TMA 671 Linjär Algebra och Numerisk Analys. x x2 2 1.
MATEMATISKA VETENSKAPER TMA67 8 Chalmers tekniska högskola Datum: 8--8 kl - 8 Examinator: Håkon Hoel Tel: ankn 38 Hjälpmedel: inga TMA 67 Linjär Algebra Numerisk Analys Tentan består av 8 uppgifter, med
= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Föreläsning 5. Approximationsteori
Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:
Tentamen i Teknisk-Vetenskapliga Beräkningar
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström Tentamen i Teknisk-Vetenskapliga Beräkningar Tentamensdatum: 005-03- Skrivtid: 9-5 Hjälpmedel: inga Om problembeskrivningen i något fall
Tentamen i Linjär algebra , 8 13.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer
Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)
% Föreläsning 3 10/2. clear hold off. % Vi börjar med att titta på kommandot A\Y som löser AX=Y
% Föreläsning 3 10/2 clear % Vi börjar med att titta på kommandot A\Y som löser AX=Y % Åter till ekvationssystemen som vi avslutade föreläsning 1 med. % Uppgift 1.3 i övningsboken: A1=[ 1-2 1 ; 2-6 6 ;
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar
TANA19 NUMERISKA METODER
HT2/2016 LINJE+ÅK+KLASS : TANA19 NUMERISKA METODER Laboration 2. Linjär algebra Namn : Personnummer : E-post : @student.liu.se Namn : Personnummer : E-post : @student.liu.se Godkänd datum : Sign : Retur
TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2
Numerisk Analys - Institutionen för Matematik KTH - Royal institute of technology 218-5-28, kl 8-11 SF1547 TENTAMEN I GRUNDKURS I NUMERISKA METODER - DEL 2 Rättas endast om del 1 är godkänd. Betygsgräns
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:
Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
1.1 MATLABs kommandon för matriser
MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion
Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Felfortplantning och kondition
Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN2 09-02-10 Hedvig Kjellström hedvig@csc.kth.se! Repetition av FN2! Felkalkyl (GNM kap 2)! Olinjära ekvationer (GNM kap 3)! Linjära
SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna
Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Intro till vektorer, matriser och Gausselimination 8. Den euklidiska normen x = x 1 + x + x n och x 1 + x + ( ) x n = x 1 x x n 9. Vi ska
ELLER (fyll bara i om du saknar tentamenskod): Datum: 32 maj Bordsnummer: Kontrollera att du fått rätt tentamensuppgifter
FÖRSÄTTSBLAD TILL TENTAMEN Din tentamenskod (6 siffror): ELLER (fyll bara i om du saknar tentamenskod): Personnummer: - Datum: 32 maj 4711 Kursens namn (inkl. grupp): Beräkningsvetenskap I (1TD393 DEMO)
ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift
Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Laboration 3. Ergodicitet, symplektiska scheman och Monte Carlo-integration
Laboration 3 Ergodicitet, symplektiska scheman och Monte Carlo-integration Hela labben måste vara redovisad och godkänd senast 3 januari för att generera bonuspoäng till tentan. Kom väl förberedd och med
Fixpunktsiteration. Kapitel Fixpunktsekvation. 1. f(x) = x = g(x).
Kapitel 5 Fixpunktsiteration 5.1 Fixpunktsekvation En algebraisk ekvation kan skrivas på följande två ekvivalenta sätt (vilket innebär att lösningarna är desamma). 1. f(x) = 0. En lösning x kallas en rot
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
15 februari 2016 Sida 1 / 32
TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari
Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper
CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2
Tentamen i ETE305 Linjär algebra , 8 13.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk ( p) ( p) ( p) ( p) ( p) ( p) Tentamen i ETE Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Lösningsförslag Tentamen i Beräkningsvetenskap I, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Lösningsförslag Tentamen i Beräkningsvetenskap I, 5. hp, 14-6-4 Kursmål (förkortade), hur de täcks i uppgifterna och maximalt
Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö
Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa
Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA
Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0
8(x 1) 7(y 1) + 2(z + 1) = 0
Matematiska Institutionen KTH Lösningsförsök till tentamensskrivningen på kursen Linjär algebra, SF60, den juni 0 kl 08.00-.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
Fel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan