Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk. Projektuppgift 2 Hållfasthetslärans grunder Våren 2012
|
|
- Cecilia Maj Lindström
- för 8 år sedan
- Visningar:
Transkript
1 Umeå universitet Tillämpad fysik och elektronik Annika Moström Rambärverk Projektuppgift Hållfasthetslärans grunder Våren 01
2 Rambärverk 1 Knut Balk Knut 3 Balk 1 Balk 3 Knut 1 Knut 4 1 Figure 1: Rambärverk med tre balkar sammanbundna i momentstyva knutpunkter. Två av knutpunkterna är låsta 1 och 4 de övriga är fria. Inledning Ett rambärverk är ett bärverk som består av ett antal balkar sammankopplade i momentstyva knutpunkter. I gur 1 illustreras ett rambärverk med tre balkar och fyra knutpunkter. Knutpunkterna 1 och 4 är låsta eller fast inspända och de övriga fria. Deformation och last för en enskild balk Tillåtna förskjutningar i en enskild balk illustreras i gur. Balken i guren går från punkt 1 har koordinaten (x 1 ) till punkt med koordinaten (x ). Knutpunkterna kan förskjutas vinkelrät mot balkens axel, (u 1 ) och (u ) samt vinkeländras: (u 1 ) och (u ). Varje enskild balk kan bära krafter som motsvarar frihetsgraderna, det vill säga transversell kraft T och moment M. Positiv tvärkraft T antas vara positiv om den pekar i den lokala y- axelns riktning i ett snitt enligt gur 3 och momentet, M är positivt när det verkar så att underkant balk blir dragen. Förskjutningsmetod för balkar Beskrivning av generella förskjutningsmetoder för att beräkna krafter och deformationer i fackverk, ramar och andra strukturer nns att läsa till exempel i Hibbeler [1] bland många andra. Vid stora rambärverk är det lämpligt att använda generella beräkningsprogram för beräkning av krafter och deformationer. Programmen nyttjar matrisformulering för att etablera jämviktssamband för hela systemet, globala jämviktssamband. Med givna randvillkor i form av förskjutningar och yttre laster kan förskjutning i enskilda knutpunkter beräknas. Baserat på knutpunktsförskjutningar kan sedan krafter för enskilda balkar beräknas. 1
3 Rambärverk u 1 u u' (x ) (x 1 ) u' 1 Figure : Balk i ett bärverk med momentstyva knutpunkter. Balkens ändpunkter ansluter till två knutar: punkt 1 har koordinaten (x 1 ) till punkt vid (x ). Möjliga förskjutningar i knutpunkterna är förskjutning vinkelrät balkens axel, (u 1 ) och (u ) samt vinkeländring i knutpunkterna: (u 1 ) och (u ). M 1 T 1 T M (x 1 ) (x ) Figure 3: Figuren illustrerar de krafter som en balk kan uppta är tvärkraft vinkelrät balkens axel, (T 1 ) och (T ) samt moment, (M 1 ) och (M ). Krafterna hör ihop med frihetsgraderna illustrerade i gur.
4 Rambärverk 3 Ett element med enbart tvärkraft och moment kan bara användas i balkberäkningar för balkar med många stöd i en dimension. En generell formulering för beräkning av ramar i två dimensioner får man om man kombinerar formuleringen för balkelement med formulering för ett stångelement. På så sätt kan man överföra krafter mellan knutpunkter även längs stängerna. Vektorer och matriser för ett balk element En balk går från punkt 1 till punkt på lokala x-axeln. I varje punkt nns två frihetsgrader, förskjutning vinkelrät mot x-axeln, u y och vinkeländring, u. Förskjutningarna i balkens ändpunkter skrivs i vektorform: u e = u e1y u e1 u ey u e1 (1) aster i ändpunkterna består av tvärkraft och moment och kan i vektorform skrivas som F e = F e1y M e1 F ey M e Samband mellan last och förskjutning skrivs då där K e kallas elementstyvhetsmatris och skrivs K e = 1EI 6EI 3 1EI 6EI 3 () F e = K e u e (3) 6EI 4EI EI 1EI 3 1EI 3 6EI EI 4EI (4) med E elasticitetsmodul för balkens material, I balktvärsnittets areatröghetsmoment och betecknar balkelementets längd. Rambärverk I plana rambärverk kopplas era balkar med godtycklig riktning ihop i knutpunkter. Knutpunkternas positioner och balkarnas utsträckning kommer då att beskrivas med koordinater i x-y-planet. aster och förskjutningar kommer då även att verka längs balkens utsträckning. För att få ett element som bättre avbildar kraftöverföring i en verklig ram brukar man kombinera stång- och balkelement i beräkningsprogram för rambärverk. Förskjutningarna i balkens ändpunkter skrivs i vektorform: u e = 3 u e1x u e1y u e1 u ex u ey u e (5)
5 Rambärverk 4 aster i ändpunkterna består av krafter i x- och y-led samt moment. Den lokala lastvektorn kan då skrivas som Stångelement F e = F e1x F e1y M e1 F ex F ey M e Från Projektuppgift 1: Fackverk kan vi återanvända den lokala styvhetsmatrisen för ett stångelement K e = [ EA EA där A är elementets tvärsnittsarea. Elementets styvhetsmatris kan då skrivas som: K e = ast på balkelement AE EA EA 0 0 AE 0 0 1EI 6EI 0 0 1EI 6EI 3 3 6EI 4EI 0 0 EI AE AE EI 1EI 0 3 6EI EI EI ] Balkelementen kan påföras last mellan knutpunkterna. De krafterna räknas om till knutpunktskrafter med elementarfall för de aktuella lasterna. Knutpunktskrafterna adderas sedan in i den globala lastvektorn på liknande sätt som temperatur läggs in i lastvektorn för ett fackverk. Bidrag från laster på lokala element adderas in i motsvarande positioner i kraftvektorn. Q = NoEl i=1 (6) (7) (8) Q ei (9) På samma sätt adderas föreskrivna lokala förskjutningar in i den globala förskjutningsvektorn Transformationsmatris u = NoEl i=1 u ei (10) Om har en godtycklig riktning i x-y-planet måste lokala x-koordinater översättas till koordinater i x-y-planet. Det görs med hjälp av en transformationsmatris. Balkens ändar denieras av x,y koordinater för respektive ände (1,), dvs 4
6 Rambärverk 5 Balkens längd beräknas då ur x = x 1 y 1 x y (11) Transformationselementen beräknas som = (x x 1 ) + (y y 1 ) (1) cos α = x x 1 (13) sin α = y y 1 Transformation från globala förskjutningar till balkens lokala förskjutningar D = cos α sin α sin α cos α cos α sin α sin α cos α Då kan den lokalt denierade förskjutningen i balkens ändar i globala koordinater beräknas ur (14) (15) u e = D u (16) Transformation från lokala till globala koordinater för kraft beräknas ur F = D T F e (17) Att transformera den lokala styvhetsmatrisen från lokala koordinater till globala görs med K = D T K e D (18) Hela rambärverket För att kunna beräkna deformationer och krafter för ett helt rambärverk måste man etablera ett globalt ekvationssystem. Det görs genom att de enskilda balkelementens komponenter (vektorer och matriser) adderas in i fackverkets komponenter. Ekvationssystemet för hela fackverket får den generella formen F = K u (19) där elementen i styvhetsmatrisen är summan av styvhetsmatriserna för varje enskild balk. Då måste man identiera vilka globala frihetsgrader stängernas lokala frihetsgrader motsvarar. Antag att frihetsgraderna i ände 1, (u x1, u y1, u 1 ), motsvaras av frihetsgraderna 5
7 Rambärverk 6 (u xi, u yi, u i ) och i ände, (u x, u y, u ) motsvaras av (u xj, u yj, u j ). Då adderas balkens bidrag till styvhetsmatrisen som Strukturens styvhetsmatris kan då skrivas som Randvillkor K(i, j) = K(i, j) + K e (0) K = NoEl i=1 K ei (1) När rambärverkets globala ekvationssystem är formulerat införs randvillkor. Föreskrivna förskjutningar betecknas u p och övriga, fria förskjutningar u f. Index för föreskrivna frihetsgrader p och fria frihetsgrader f. Förskjutningar kan denieras i lokala eller globala koordinater och adderas in i systemet förskjutningsvektor. u p = u def () Vanligaste randvillkoren innebär förhindrad förskjutning i frihetsgraden och skrivs Givna yttre laster adderas in i lastvektorn F = u p = 0 (3) NoP j=1 F j (4) där NoP betecknar antal knutpunkter. Då har vi etablerat komponenterna i det globala ekvationssystemet ösa ekvationssystemet F = Ku (5) Dela upp ekvationssystemet så att frihetsgrader utan föreskriven förskjutning ges index f och frihetsgrader med föreskriven förskjutning får index p. [ ] [ ] [ ] Ff Kff K = fp uf (6) F p K pf K pp u p Beräkna förskjutningar och reaktionskrafter Fria förskjutningar beräknas ur Reaktionskrafterna beräknas därefter ur u f = K 1 ff (F f K fp u p ) (7) F p = [ K pf K pp ] u (8) 6
8 Rambärverk 7 Beräkna balkkrafter Krafterna vid knutpunkterna i varje enskild balk kan sedan beräknas ur F e = K T e D e u e (9) Resultat från beräkningar Vid dimensionering av rambärverk kan påkänningarna i enskilda balkar illustreras med hjälp av diagram över normalkraft, tvärkraft och moment. Det brukar även vara intressant att beräkna maximal normal- och skjuvspänning utifrån givna tvärsnittsdata. Problem 1. Beräkna knutpunktsförskjutningarna och nodkrafter för rambärverket i gur 1 om 1 = 5.0m, = 3.0m. Balkarna har areatröghetsmoment I = m 4 och A = m 4. Balkarna är tillverkade av ett material med elasticitetsmodul, E = 00 GPa. På knut läggs en horisontell last P = 10kN.. Beräkna knutpunktsförskjutningar och stödreaktioner om rambärverket i föregående uppgift om kraften byts mot en föreskriven förskjutning u x = 40mm. 3. Ramen i gur 4 har följande egenskaper: 1 = 5.0m, = 3.0m. Balkarna har areatröghetsmoment I = m 4 och A = m 4. Balkarna är tillverkade av ett material med elasticitetsmodul, E = 00 GPa. Knut och 3 i rambärverket en horisontell last P = 10kN. I knutpunkt verkar ett moment M = 0kNm. Beräkna samtliga knutpunktsförskjutningarna och reaktionskraften. Redovisning Redovisa lösningarna på problemen ovan i en individuell rapport. Rapporten ska innehålla en inledande teoridel, ett metodavsnitt där beräkningsalgoritmen beskrivs, en resultatdel där resultaten beskrivs, samt diskussion och slutsatser. Koden bifogas rapporten i en bilaga. Rapporten laddas upp i Moodle. Referenser [1] R. C. Hibbeler, Structural analysis, Pearson Education, 009 7
9 Rambärverk 8 Knut 3 Knut 4 Balk 5 Knut Balk Knut 5 Balk 1 Balk 3 Balk 4 Balk 6 Knut 1 Knut 6 1 Figure 4: Rambärverk med sex balkar. Två av knutpunkterna är låsta 1 och 6 de övriga är fria. 8
Umeå universitet Tillämpad fysik och elektronik Annika Moström Fackverk. Projektuppgift 1 Hållfasthetslärans grunder Våren 2012
Umeå universitet Tillämpad fysik och elektronik Annika Moström 212-3-6 Fackverk Projektuppgift 1 Hållfasthetslärans grunder Våren 212 Fackverk 1 Knut 3 Knut 2 Stång 2 Stång 3 y Knut 4 Stång 1 Knut 1 x
Stångbärverk. Laboration. Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg. 14 mars 2014
Umeå universitet Tillämpad fysik och elektronik Staffan Grundberg Laboration 4 mars 4 Stångbärverk Hållfasthetslärans grunder Civilingenjörsprogrammet i teknisk fysik Knut Knut....4 y/ L.5.6.7.8.9 Knut
Matrismetod för analys av stångbärverk
KTH Hållfasthetslära, J aleskog, September 010 1 Inledning Matrismetod för analys av stångbärverk Vid analys av stångbärverk är målet att bestämma belastningen i varje stång samt att beräkna deformationen
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 008-10-1, kl 08.00-13.00 Maimal poäng på tentamen är 0. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och Calfemmanual.
Tentamen i Hållfasthetslära AK2 för M Torsdag , kl
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 för M Torsdag 2015-06-04, kl. 8.00-13.00 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts
4.6 Stelkroppsrörelse i balk
Övning Balkar, Balk-Stång, Symmetri Rickard Shen 0-0- FEM för Ingenjörstillämpningar, SE05 rshen@kth.se.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz Givet: w L w L () Sökt: Visa att förskjutningsansatsen
Övning 3 FEM för Ingenjörstillämpningar Rickard Shen Balkproblem och Ramverk
.6 Stelkroppsrörelse i balk Bild av Veronica Wåtz w δ θl Givet: w δ + θl () θ θ θ Sökt: Visa att förskjutningsansatsen kan beskriva en godtycklig stelkroppsrörelse, dvs w x δ + θx. w θ : Allmänt: wξ N
3 Fackverk. Stabil Instabil Stabil. Figur 3.2 Jämviktskrav för ett fackverk
3 Fackverk 3.1 Inledning En struktur som består av ett antal stänger eller balkar och som kopplats ihop med mer eller mindre ledade knutpunkter kallas för fackverk. Exempel på fackverkskonstruktioner är
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Konstruktionsuppgifter för kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 1 Förord Denna skrift innehåller de konstruktionsuppgifter som avses lösas i kursen Strukturmekanik
Lösning: B/a = 2,5 och r/a = 0,1 ger (enl diagram) K t = 2,8 (ca), vilket ger σ max = 2,8 (100/92) 100 = 304 MPa. a B. K t 3,2 3,0 2,8 2,6 2,5 2,25
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMHL0, 009-03-13 kl LÖSNINGAR DEL 1 - (Teoridel utan hjälpmedel) 1. Du har en plattstav som utsätts för en
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-0-5 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i Linköping, IK DEL 1 - (Teoridel utan hjälpmedel) U G I F T E R med L Ö S N I N G A R 1. Ange Hookes lag i en dimension (inklusive temperaturterm), förklara de ingående storheterna,
LÖSNINGAR. TENTAMEN i Hållfasthetslära grk, TMHL07, kl DEL 1 - (Teoridel utan hjälpmedel)
ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en balk utsatt för transversell last q(x) kan beräknas med formeln σ x M y z I y Detta uttryck är relaterat (kopplat) till ett koordinatsystem
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
TENTAMEN I KURSEN BYGGNADSMEKANIK 2
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN BYGGNADSMEKANIK Datum: 014-08-6 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström och Fredrik Häggström
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-05-06 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Övning 1 FEM för Ingenjörstillämpningar Rickard Shen
Övning FE för Ingenjörstillämpningar Rickard Shen 9--9 rshen@kth.se 7-7 7 59.6 Castiglianos :a Sats och insta Arbetets rincip Bilder ritade av Veronica Wåtz, asse emeritus. 6EI Givet: k = () L Sökt: θ
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 014-08-8 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-08-17 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Manual för ett litet FEM-program i Matlab
KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 011-1-08 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Lunds Tekniska Högskola, LTH
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK2 2017-08-21 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
Tekniska Högskolan i inköping, IK DE 1 - (Teoridel utan hjälpmedel) NAMN... 1. Vilken typ av ekvation är detta: ε = d u(x) d x Ange vad de ingående storheterna betyder, inklusive deras dimension i SI-enheter.
1.6 Castiglianos 2:a Sats och Minsta Arbetets Princip
--8 FE för Ingenjörstillämpningar, SE rshen@kth.se.6 Castiglianos :a Sats och insta Arbetets rincip ilder ritade av Veronica Wåtz. Givet: k () L Sökt: Lösning: et står att ska beräknas med hjälp av energimetod
Tentamen i kursen Balkteori, VSM-091, , kl
Tentamen i kursen Balkteori, VSM-091, 009-10-19, kl 14.00-19.00 Maximal poäng på tentamen är 40. För godkänt tentamensresultat krävs 18 poäng. Tillåtna hjälpmedel: räknare, kursens formelsamling och alfemmanual.
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-03-7 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära grk, TMHL07, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR
TENTAMEN i Hållfasthetslära grk, TMHL07, 040423 kl -12 DEL 1 - (Teoridel utan hjälpmedel) LÖSNINGAR 1. Skjuvpänningarna i en balk utsatt för transversell last q() kan beräknas med formeln τ y = TS A Ib
Lösning: ε= δ eller ε=du
Tekniska Högskolan i inköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Enkla bärverk TMH02, 2008-06-04 kl ÖSNINGAR DE 1 - (Teoridel utan hjälpmedel) 1. Definiera begreppet töjning (ε) och ange
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3. Jim Brouzoulis Tillämpad Mekanik Chalmers
Övningsuppgifter och lösningsförslag till kursen Strukturmekanik grunder för V3 Jim Brouzoulis Tillämpad Mekanik Chalmers 2 Förord Detta kompendie är tänkt som ett komplement till eempelsammlingen av Ekevid,
TENTAMEN I KURSEN TRÄBYGGNAD
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN TRÄBYGGNAD Datum: 013-05-11 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel: Limträhandboken
FEM M2 & Bio3 ht06 lp2 Projekt P 3
HH/SET/BN E, Projekt 1 E & Bio ht06 lp Projekt P Allmänt Lös uppgifterna nedan med E. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och utgör underlag för
TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I KURSEN DIMENSIONERING AV BYGGNADSKONSTRUKTIONER Datum: 01-1-07 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström
TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik TENTAMEN I FÖRDJUPNINGSKURS I BYGGKONSTRUKTION Datum: 016-0-3 Tid: 9.00-15.00 Antal uppgifter: 4 Max poäng: 40 Lärare: Annika Moström Hjälpmedel:
Belastningsanalys, 5 poäng Balkteori Deformationer och spänningar
Spänningar orsakade av deformationer i balkar En från början helt rak balk antar en bågform under böjande belastning. Vi studerar bilderna nedan: För deformationerna gäller att horisontella linjer blir
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Tisdag 5:e Januari 13:15 17:00 Extraföreläsning Repetition PPU203 Hållfasthetslära Tisdagens repetition Sammanfattning av kursens viktigare moment Vi går
FEM M2 & Bio3 ht07 lp2 Projekt P 3 Grupp D
HH/SET/BN FEM, Projekt 1 FEM M2 & Bio ht07 lp2 Projekt P Grupp D Allmänt Lös uppgifterna nedan med FEM. De är nivågrupperade efter önskat betyg på teoridelen. - Omarkerade uppgifter är obligatoriska och
Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl DEL 1 - (Teoridel utan hjälpmedel)
DEL 1 - (Teoridel utan hjälpmedel) 1. Vilken typ av ekvation är detta: LÖSNINGAR γ y 1 G τ y Ange vad storheterna γ y, τ y, och G betyder och ange storheternas enhet (dimension) i SI-enheter. Ett materialsamband
Betongbalkar. Böjning. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström. Räkneuppgifter
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Annika Moström Räkneuppgifter 2012-11-15 Betongbalkar Böjning 1. Beräkna momentkapacitet för ett betongtvärsnitt med bredd 150 mm och höjd 400 mm armerad
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära Lunds Tekniska Högskola, LTH Tentamen i Hållfasthetslära AK1 2017-04-18 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den
Spänning och töjning (kap 4) Stång
Föreläsning 3 Spänning och töjning Spänning och töjning (kap 4) Stång Fackverk Strukturmekanik FM60 Materialmekanik SMA10 Avdelningen för Bggnadskonstruktion TH Campus Helsingborg Balk Ram Spänning (kraftmått)
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Repetition Krafter Representation, komposanter Friläggning och jämvikt Friktion Element och upplag stång, lina, balk Spänning och töjning Böjning Knäckning Newtons lagar Lag
Tentamen i Balkteori, VSMN35, , kl
Tentamen i Balkteori, VSMN35, 2012-10-26, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs 16 poäng. Tentamen består av två delar: En del med frågor och en del med räkneuppgifter.
Reducering av analystid vid svetssimulering
EXAMENSARBETE 27:7 CIV Reducering av analystid vid svetssimulering KATARINA HANDELL CIVILINGENJÖRSPROGRAMMET Teknisk fysik Luleå tekniska universitet Institutionen för Tillämpad fysik, maskin- och materialteknik
B3) x y. q 1. q 2 x=3.0 m. x=1.0 m
B1) En konsolbalk med tvärsnitt enligt figurerna nedan är i sin spets belastad med en punktlast P på de olika sätten a), b) och c). Hur böjer och/eller vrider balken i de olika fallen? B2) Ett balktvärsnitt,
e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2
Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π
8 Teknisk balkteori. 8.1 Snittstorheter. 8.2 Jämviktsekvationerna för en balk. Teknisk balkteori 12. En balk utsätts för transversella belastningar:
Teknisk balkteori 12 8 Teknisk balkteori En balk utsätts för transversella belastningar: 8.1 Snittstorheter N= normalkraft (x-led) T= tvärkraft (-led) M= böjmoment (kring y-axeln) Positiva snittstorheter:
Lösningar, Chalmers Hållfasthetslära F Inst. för tillämpad mekanik
Lösningar, 050819 1 En balk med böjstyvhet EI och längd 2L är lagrad och belastad enligt figur. Punktlasten P kan flyttas mellan A och B. Bestäm farligaste läge av punktlasten med avseende på momentet
Tentamen i Hållfasthetslära AK
Avdelningen för Hållfasthetslära unds Tekniska Högskola, TH Tentamen i Hållfasthetslära AK1 2017-03-13 Tentand är skyldig att visa upp fotolegitimation. Om sådan inte medförts till tentamen skall den visas
Material, form och kraft, F5
Material, form och kraft, F5 Repetition Material, isotropi, ortotropi Strukturelement Stång, fackverk Balk, ramverk Upplag och kopplingar Linjärt elastiskt isotropt material Normalspänning Skjuvspänning
FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 20 februari 2007 FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Projektuppgift Syfte: att träna på att skriva ett lite större Matlabprogram med relevans för byggnadsmekanik.
Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006
KTH - HÅFASTHETSÄRA Tentamen i Hållfasthetslära gkmpt, gkbd, gkbi, gkipi (4C1010, 4C1012, 4C1035, 4C1020) den 13 december 2006 Resultat anslås senast den 8 januari 2007 kl. 13 på institutionens anslagstavla,
1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Byggteknik Uppgifter 2016-08-26 Träkonstruktioner 1. En synlig limträbalk i tak med höjd 900 mm, i kvalitet GL32c med rektangulär sektion, belastad med snölast.
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Exempel 5: Treledstakstol
5.1 Konstruktion, mått och dimensioneringsunderlag Dimensionera treledstakstolen enligt nedan. Beakta två olika fall: 1. Dragband av limträ. 2. Dragband av stål. 1. Dragband av limträ 2. Dragband av stål
Grundläggande maskinteknik II 7,5 högskolepoäng
Grundläggande maskinteknik II 7,5 högskolepoäng Provmoment: TEN 2 Ladokkod: TH081A Tentamen ges för: KENEP 15h TentamensKod: Tentamensdatum: 2016-01-15 Tid: 09:00 13:00 Hjälpmedel: Bifogat formelsamling,
K-uppgifter. K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft. i regeln och illustrera spänningen i en figur.
K-uppgifter K 12 En träregel med tvärsnittsmåtten 45 mm 70 mm är belastad med en normalkraft på 28 kn som angriper i tvärsnittets tngdpunkt. Bestäm normalspänningen i regeln och illustrera spänningen i
CAEBSK10 Balkpelare stål
CAEBSK10 Balkpelare stål Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING...3 1.1 TEKNISK BESKRIVNING...3 2 INSTRUKTIONER...3 2.1 KOMMA IGÅNG MED CAEBSK10...4 2.2 INDATA...4 2.2.1 GRUNDDATA...5
BERÄKNINGSPROGRAM FÖR TAKSTOLAR Jämförelse mellan förskjutningsmetoden och FEM
AKADEMIN FÖR TEKNIK OCH MILJÖ BERÄKNINGSPROGRAM FÖR TAKSTOLAR Jämförelse mellan förskjutningsmetoden och FEM Joakim Mårtensson Juni 2012 Examensarbete/uppsats/15hp Konstruktion/modellering Byggnadsingenjörsprogrammet
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.
Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av
2 november 2016 Byggnadsmekanik 2 2
Byggnadsmekanik 2 Välkommen! 2 november 2016 Byggnadsmekanik 2 2 Byggnadsmekanik 2 Kursen är en fortsättning i byggnadsmekanik och hållfasthetslära med inriktning mot byggnadskonstruktion. I kursen behandlas
K-uppgifter Strukturmekanik/Materialmekanik
K-uppgifter Strukturmekanik/Materialmekanik K 1 Bestäm resultanten till de båda krafterna. Ange storlek och vinkel i förhållande till x-axeln. y 4N 7N x K 2 Bestäm kraftens komposanter längs x- och y-axeln.
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
= 1 E {σ ν(σ +σ z x y. )} + α T. ε y. ε z. = τ yz G och γ = τ zx. = τ xy G. γ xy. γ yz
Tekniska Högskolan i Linköping, IKP /Tore Dahlberg LÖSNINGAR TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 060601 kl -12 DEL 1 - (Teoridel utan hjälpmedel) 1. Spänningarna i en punkt i ett
CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor
Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig
Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams
Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna
Användarmanual till Maple
Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Repetition. Newtons första lag. En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0)
Repetition Newtons första lag En partikel förblir i vila eller likformig rörelse om ingen kraft verkar på den (om summan av alla krafter=0) v Om ett föremål är i vila eller likformig rörelse är summan
Lösningar till 5B1762 Optimeringslära för T, 24/5-07
Lösningar till 5B76 Optimeringslära för T, 4/5-7 Uppgift (a) Först använder vi Gauss Jordans metod på den givna matrisen A = Addition av gånger första raden till andra raden ger till resultat matrisen
FEM1: Randvärdesproblem och finita elementmetoden i en variabel.
MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som
VSMA01 - Mekanik ERIK SERRANO
VSMA01 - Mekanik ERIK SERRANO Innehåll Material Spänning, töjning, styvhet Dragning, tryck, skjuvning, böjning Stång, balk styvhet och bärförmåga Knäckning Exempel: Spänning i en stång x F A Töjning Normaltöjning
Biomekanik, 5 poäng Moment
(kraftmoment) En resulterande (obalanserad kraft) strävar efter att ändra en kropps rörelsetillstånd. Den kan också sträva efter att vrida en kropp. Måttet på kraftens förmåga att vrida kroppen runt en
caeec301 Snittkontroll stål Användarmanual Eurocode Software AB
caeec301 Snittkontroll stål Analys av pelarelement enligt SS-EN 1993-1-1:2005. Programmet utför snittkontroll för givna snittkrafter och upplagsvillkor. Rev: C Eurocode Software AB caeec301 Snittkontroll
P R O B L E M
Tekniska Högskolan i Linköping, IEI /Tore Dahlberg TENTAMEN i Hållfasthetslära - Dimensioneringmetoder, TMHL09, 2008-08-14 kl 8-12 P R O B L E M med L Ö S N I N G A R Del 1 - (Teoridel utan hjälpmedel)
TMV166 Linjär algebra för M. Datorlaboration 2: Matrisalgebra och en mekanisk tillämpning
MATEMATISKA VETENSKAPER TMV66 07 Chalmers tekniska högskola Datorlaboration Examinator: Tony Stillfjord TMV66 Linjär algebra för M Datorlaboration : Matrisalgebra och en mekanisk tillämpning Allmänt Den
2.2 Tvådimensionella jämviktsproblem Ledningar
2.2 Tvådimensionella jämviktsproblem Ledningar 2.2 Sfären påverkas av tre krafter. Enligt resonemanget om trekraftsystem i kapitel 2.2(a) måste krafternas verkningslinjer då skära varandra i en punkt,
Krafter och moment. mm F G (1.1)
1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en
Självkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
TENTAMEN I HÅLLFASTHETSLÄRA FÖR F (MHA081)
TENTAMEN I HÅFASTHETSÄRA FÖR F (MHA081) Tid: Fredagen den 19:e augusti 2005, klockan 08.30 12.30, i V-huset ärare: Peter Hansbo, ankn 1494 Salsbesök av lärare: c:a kl 9.30 och 11.30. ösningar: anslås på
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 11, 2017 12. Tensorer Introduktion till tensorbegreppet Fysikaliska
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar.
1 Föreläsning 1: INTRODUKTION Målsättningar Proffesionell kunskap. Kunna hänvisa till lagar och definitioner. Tydlighet och enhetliga beteckningar. Kursens olika delar Teorin Tentamen efter kursen och/eller
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA JUNI 2016
Institutionen för tillämpad mekanik, Chalmers tekniska högskola ösningar TENTAMEN I HÅFASTHETSÄRA KF OCH F MHA 081 3 JUNI 2016 Tid och plats: 14.00 18.00 i M huset. ärare besöker salen ca 15.00 samt 16.30
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Finita Elementmetoden
Finita Elementmetoden Bilder: Elena Kabo Anders Ekberg Teknisk mekanik / CHARMEC anders.ekberg@me.chalmers.se Bakgrund Allmängiltighet Geometri Last Material Datorbaserat CAD -> CAE -> CAM Beräkningsintensivt
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Formelsamling i Hållfasthetslära för F
Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent
LINJÄRA AVBILDNINGAR
LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,
TENTAMEN i Hållfasthetslära; grundkurs, TMMI kl 08-12
Linköpings Universitet Hållfasthetslära, IK TENTAMEN i Hållfasthetslära; grundkurs, TMMI17 2001-08-17 kl 08-12 Kursen given lp 4, lå 2000/01 Examinator, ankn (013-28) 1116 Tentamen Tentamen består av två
Angående skjuvbuckling
Sidan 1 av 6 Angående skjuvbuckling Man kan misstänka att liven i en sandwich med invändiga balkar kan haverera genom skjuvbuckling. Att skjuvbuckling kan uppstå kan man förklara med att en skjuvlast kan
Tentamen i Balkteori, VSMF15, , kl
Tentamen i Balkteori, VSMF15, 2011-10-18, kl 08.00-13.00 Maimal poäng på tentamen är 40. För godkänt tentamensresultat krävs maimalt 18 poäng. Tentamen består av två delar: En del med frågor och en del
Biomekanik Belastningsanalys
Biomekanik Belastningsanalys Skillnad? Biomekanik Belastningsanalys Yttre krafter och moment Hastigheter och accelerationer Inre spänningar, töjningar och deformationer (Dynamiska påkänningar) I de delar
Tentamen i Matematik 1 DD-DP08
Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas
Hållfasthetslära. VT2 7,5 p halvfart Janne Färm
Hållfasthetslära VT2 7,5 p halvfart Janne Färm Fredag 27:e Maj 10:15 15:00 Föreläsning 19 Repetition PPU203 Hållfasthetslära Fredagens repetition Sammanfattning av kursens viktigare moment Vi går igenom