Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.
|
|
- Gunilla Johanna Fredriksson
- för 9 år sedan
- Visningar:
Transkript
1 UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och jämna ) funktioner Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. DEFINITION : Vi säger att funktionen är jämn om ö DEFINITION 2: Vi säger att funktionen är udda om ö av 0
2 Exempel. Följande funktioner är jämna: a) b) c) d) e) 4 f) 3 3 g) 5 Exempel 2. Några udda funktioner: a) b) c) d) e) Exempel 3. Följande funktioner är varken jämna eller udda: a) b) 5 c) d) e) Anmärkning: Följande regler kommer direkt från definitionen UDDA + UDDA= UDDA ( funktion) ( Ex: är en udda funktion) TAL*UDDA=UDDA ( Ex: 23 är en udda funktion) UDDA*JÄMN= UDDA ( Ex: är en udda funktion) UDDA* UDDA = JÄMN ( Ex: är en jämnfunktion) JÄMN * JÄMN = JÄMN ( Ex: är en jämnfunktion) När vi beräknar integral över ett symetriskt intervall, förenklar vi beräkning om det finns udda termer i integranden, som i nedanstående exempel: Uppgift. Beräkna integralen / a) / b) c) 3 5 d) Lösning a) 2 av 0
3 Vi har ett symmetriskt intervall [ /2, /2 ] och därför blir integralen av varje udda term lika med 0 ( vi har kvar endast integralen av icke udda termen 5: / / / = / =5 b) c) 0 d) 0 = UDDA FUNKTIONER OCH DUBBELINTEGRAL Ovanstående förenkling vid beräkning av en enkelintegral av udda funktioner över ett symmetrisk interval, kan vi också använda vid beräkning av en dubbelintegral om integrationsområde är symmetriskt i en av axlarna. FALL. Om i) integrationsområde D i xy planet definieras av, ( alltså området är symetrisk i x axeln ) och ii), är en udda funktion med avseende på y ( dvs,, för alla, ) då gäller,. Bevis: Enligt regler för enkelintegraler med udda integranden över symmetriskt intervall gäller Därför, för varje ( fixt ) x., =, av 0
4 Exempel. Beräkna där,, 2 5, }. Lösning 0 eftersom D är symmetrisk i x axeln och är en udda funktion på D med avseende på y ( uppenbart,, ) Uppgift 2. Låt,, 3, }. Beräkna a) 8 8 b) 5 c) Lösning b) Första tre termer i integranden, och är är udda med avseende på y ( för, tillfälligt, fixt x). T ex för tredje term gäller,, Kontrollera själv för första två termer. Om vi integrerar termviss får vi av 0
5 Svar: a) 0, b) 5 c) 0 ============================================================== FALL 2. Om i) integrationsområde D i xy planet definieras av, ( alltså området är symetrisk i y axeln ) och ii), är en udda funktion med avseende på x d y ( dvs,, för alla, ) då gäller,. ( Detta bevisas på samma sätt som i FALL ) -v(y) 0 c v(y) x Exempel. Beräkna 5 där,, 2 4, }. Lösning 5 0 eftersom D är symmetrisk i y axeln och 5 är en udda funktion på D med avseende på x. 5 av 0
6 Uppgift 3. Låt,, 3, 2}. Beräkna a) 4 b) 0 c) Svar: { Området,, 3, 2 2} är symmetriskt i y axeln. } a) 0 b) 0 = =0 arean(d)=80 c) =0+ = ========================================================= I nedanstående uppgift är integrationsområdet symmetriskt i både x och y axeln som vi utnyttjar för att förenkla beräkningen. Uppgift 4. Beräkna 5 4 där,, 9}. D 3 ( D är cirkeln som har radien=3 och centrum i origo) Lösning 5 4 = (*) = arean(d) = 4 9 =36 Anmärkning :. Den första integralen i (*) är 0 eftersom integranden 5 är en udda funktion på y och D är symmetrisk i x axeln. 2. Den andra integralen i (*) är 0 eftersom integranden är en udda funktion på x och D är symmetrisk även i y axeln. 6 av 0
7 JÄMNA INTEGRANDER Vi kan ( lite) förenkla beräkning av dubbelintegralen för funktioner som är jämna i en variabel ( t ex y) om området är symmetrisk kring en axel ( t ex x-axeln): FALL 3. Om i) integrationsområde D i xy-planet definieras av, ( alltså området är symetrisk i x-axeln ) och ii), är en jämn funktion med avseende på y ( dvs,, för alla, ) y u(x) då gäller,, a D D2 b x och därför -u(x),,, 2,. FALL 4. Om i) integrationsområde D i xy planet definieras av, ( alltså området är symetrisk i y axeln ) och ii), är en jämn funktion med avseende på x d y ( dvs,, för alla, ) då gäller -v(y) D2 D v(y), 2,. c 0 x 7 av 0
8 FALL 5. Alla fall F F4 kan generaliseras och användes på allmänna symmetriska område: Låt D vara ett integrationsområde i xy planet symmetriskt kring linjen L som är delad i två symmetriska områden. Låt, beteckna den punkt i D2 som är symmetrisk till,. A) Om y,, ( för alla, ) (x,y ) då är,, och därför D2 D (x,y),,. o x B) Om,, ( för alla, ) då är,, och därför,. Anmärkning: A, B kan enkel bevisas med hjälp av dubbelintegralens definition ( Riemannsummor ). Uppgift 5. Låt,. Beräkna, om a) D är triangeln med hörn i (0,0), (,0) och (0,). b) D är triangeln med hörn i (,0), (0,) och (,0) Tipps: Använd a). c) D är rektangeln med hörn i (,0), (0,), (,0) och (0, ) Tipps: Använd a) eller b). d) D definieras av Lösning a), = x+y= 8 av 0 0
9 ... 2 b) Punkten,, ä,. Eftersom,,, (för alla, ) har vi,, och därför, 2, enligt a 2 6 c) På grund av symmetri, eftersom,,,, gäller att, d) Lägg märke till att randlinjen består av fyra delar, ö,,, ä Därför är definitionsområde,, samma som i frågan c. Integranden i d är också samma som i c frågan, och därmed har integralen i d samma värde som den i frågan c dvs. Svar: a) /6, b) /3, c) 2/3, d 2/3 9 av 0
10 Uppgift6. Låt, 2. a) Beräkna, om D är triangeln med hörn i (0,0), (,0) och (,). b) Använd resultat i a) för att beräkna, om D är rektangeln med hörn i (0.0), (,0), (,) och (0,). Lösning:, 2 Först beräknar vi integralen 2 y=x (,) med hjälp av substitutionen ; 2 ( Vi tillfälligt betraktar x som en konstant ) 2 / / Från (*) har vi 2 / / 0 = / / / 5 0 b) Området är symmetrisk kring linjen. Om, är symmetrisk punkt till (x,y) kring linjen då är,, [alltså y och x byter plats]. Därför (x,y ) (x,y) (,),, 2 2,. Därför,, 2,, och därmed enligt a Svar: a) b) 0 av 0
DUBBELINTEGRALER. Rektangulära (xy) koordinater
ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal
Läs merVi antar att f och g ar begränsade och integrerbara funktioner på givna mätbara ( kvadrerbara) områden och att a, b ar konstanter.
GNSKAPR HOS UBBLINTGRALR. Vi antar att f och g ar begränsade och integrerbara funktioner på givna mätbara ( kvadrerbara) områden och att a, b ar konstanter. å gäller:., 0 om arean() =0 ( dvs. om är en
Läs merKap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
Läs merKap Generaliserade multipelintegraler.
Kap 4.3. Generaliserade multipelintegraler. 50. Beräkna följande generaliserade multipelintegraler: A a. dxdy, ges av x, 0 xy x A b. A c. A d. A e. K x ( + x 2 )( + x 2 y 2 ) dxdy, ges av x > 0, xy x dxdy,
Läs merModul 5: Integraler. Det är viktigt att du blir bra på att integrera, så träna mycket.
Institutionen för Matematik SF625 Envariabelanalys Läsåret 27-28 Lars Filipsson Modul 5: Integraler Denna modul handlar om integraler. Det slås fast i en precis definition vad som menas med att en funktion
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.
Läs merhar ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)
Läs merSF1626 Flervariabelanalys
1 / 19 SF1626 Flervariabelanalys Föreläsning 1 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 218, Period 3 2 / 19 SF1626 Flervariabelanalys agens Lektion ubbelintegraler: Avsnitt 14.1-14.2
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Läs merSF1626 Flervariabelanalys
Föreläsning 11 Institutionen för matematik KTH VT 2018 1 agens program Variabelsubstitution i dubbelintegraler Något om generaliserade integraler och medelvärden Bokens kapitel 14.4 och i någon mån också
Läs merInstitutionen för Matematik. SF1625 Envariabelanalys. Modul 5 Integraler
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 5 Integraler Denna modul omfattar kapitel 5 och avsnitt 6.-6. i kursboken Calculus av Adams och Esse och undervisas på tre föreläsningar,
Läs merKap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
Läs merx ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Läs merLösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A
Institutionen för matematik SF1626 Flervariabelanalys Torsdag augusti 16, 2018 DEL A 1. Givet funktionen f(x, y) = ln(x 2 y 2 ). a) Bestäm definitionsmängden D för f. Rita även en bild av D. (2 p) b) Bestäm
Läs mer10 Beräkning av dubbelintegraler
Nr,7april-,Amelia Beräkning av dubbelintegraler. Bte av integrationsordning Eempel (96) Kasta om integrationsordningen i a) b) c) Z Z e Z 6 Z d d d Z ln Z f(, )d f(, )d f(, )d. Lösning: Med hjälp av figurer
Läs meroch kallas ytintegral AREAN AV EN BUKTIG YTA
YTINTEGRALER Definition. Vi betraktar en funktion (xx, yy, zz) som är definierad på ytan Y. Vi delar ytan i ej- överlappande delar S i, väljer en punkt T i i varje S i och beräknar summan ii= ff(tt ii
Läs merSAMMANFATTNING TATA41 ENVARIABELANALYS 1
SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3
Läs merEXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM
EXISTENS AV EN UNIK LÖSNING TILL FÖRSTAORDNINGENS BEGYNNELSEVÄRDESPROBLEM Vi betraktar ett begnnelsevärdesproblem IVP, initial-value problem) av första ordningen som är skrivet på normal form IVP1) Man
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
Läs mer1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):
Läs merExistensen av största och minsta värde är inte garanterad i det här fallet.
OPTIMERING PÅ ICKE-KOMPAKTA OMRÅDEN. Låt f,..., ) vara en reell funktion med en icke-kompakt definitionsmängd D. ( n Eistensen av största och minsta värde är inte garanterad i det här fallet. För att bestämma
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs mer11 Dubbelintegraler: itererad integration och variabelsubstitution
Nr, april -5, Amelia ubbelintegraler: itererad integration och variabelsubstitution. Itererad integration tterligare eempel Eempel (97k) Beräkna ( ) och ( ). ( 8) dd om begränsas av, 5 3.75.5.5.5.5 3.75
Läs merMVE465. Innehållsförteckning
Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade
Läs merx 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7
TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga
Läs merTisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Läs merSådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 211-1-18 DEL A 1. Låt x och y vara två tal vars summa är 6. Ange det minimala värdet som uttrycket 2x 2 + y 2 kan anta. Lösningsförslag. Eftersom vi
Läs merDubbelintegraler och volymberäkning
ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 24-8-2 DEL A. Bestäm och skissera definitionsmängden till funktionen fx, y) = x 2 + y 2 + 2x 4y + + x. Är definitionsmängden kompakt? 4 p) Lösning.
Läs merMATEMATIK 5 veckotimmar
EUROPEISK STUDENTEXAMEN 2010 MATEMATIK 5 veckotimmar DATUM : 4 Juni 2010 SKRIVNINGSTID : 4 timmar (240 minuter) TILLÅTNA HJÄLPMEDEL : Skolans formelsamling Icke-programmerbar, icke-grafritande räknedosa
Läs merInstitutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Läs merTentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Läs merTentamen SF1626, Analys i flera variabler, Svar och lösningsförslag. 2. en punkt på randkurvan förutom hörnen, eller
Tentamen SF66, Analys i flera variabler, --8 Svar och lösningsförslag. Låt fx, y) = ye x y. Bestäm största och minsta värde till f på den slutna kvadraten med hörn i, ),, ),, ) och, ). Lösning. f är kontinuerlig
Läs merLäsanvisningar till Analys B, HT 15 Del 1
Läsanvisningar till Analys B, HT 15 Del 1 Dag 1 Avsnitt 6.1 Definition av trappfunktion och integral av en trappfunktion. Räkneregler (de är mer eller mindre uppenbara). Definition av Riemannintegralen
Läs merBestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand
Läs merTentamen i Envariabelanalys 2
Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna
Läs mer(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
Läs meru av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)
ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje
Läs merLösningar till Matematisk analys
Lösningar till Matematisk analys 685. Sätt fx x. Rotationskroppens volym är π fx dx π ] x 6 dx π 7 x7 π 7. Rotationskroppens area är summan av arean av kroppens mantelyta och arean av kroppens cirkulära
Läs merInstitutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Läs merx 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)
Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Läs merFlervariabelanalys och Matlab Kapitel 3
Flervariabelanalys och Matlab Kapitel 3 Thomas Wernstål Matematiska Vetenskaper 28 september 2012 3 Multipelintegraler 3.1 ubbelintegraler I detta kapitel skall vi studera olika sätt på vilket man kan
Läs merav envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)
Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna
Läs merSF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Läs merInlämningsuppgift nr 2, lösningar
UPPALA UNIVRITT MATMATIKA INTITUTIONN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 8 Inlämningsuppgift nr, lösningar. Visa att ekvationen x + x(y ) + (y ) + z + sin(yz) definierar z som en funktion
Läs mera (och liknande ekvationer). a har lösningar endast om 1 a 1 (eftersom 1 sin( x ) 1). 3 saknar lösningar.
TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x) a (och liknande ekvationer) Ekvationen sin( x) a har lösningar endast om a (eftersom sin( x ) ) Exempelvis, ekvationen sin( x) saknar lösningar Uppgift
Läs merModul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Läs merSF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall
Läs merInstitutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Läs merHär finns en definition av gränsvärde (enligt Adams Calculus) av en funktion då x går mot ett tal a ( s.k. epsilon delta definition).
GRÄNSVÄRDEN OCH KONTINUITET Här finns en definition av gränsvärde (enligt Adams Calculus av en funktion då går mot ett tal a ( s.k. epsilon delta definition. Definition. ( Cauchy Vi säger att funktionen
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12 DEL A 1. Betrakta funktionen f som ges av f(x) = xe 1/x. A. Bestäm definitionsmängden till f. B. Beräkna de fyra gränsvärdena lim x ± f(x)
Läs mer= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
Läs merFlervariabelanlys och Matlab Kapitel 3
Flervariabelanlys och Matlab Kapitel 3 Thomas Wernstål Carl-Henrik Fant Matematiska Vetenskaper 17 september 2009 1 3 Multipelntegraler 3.1 ubbelintegraler Exempel. Vi skall beräkna dubbelintegralen (y
Läs merIV, SF1636(5B1210,5B1230).
Lösningar till tentamensskrivning i Matematik I, F636(5B,5B3) Tisdagen den 9 augusti 8, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang
Läs merRäta linjer i 3D-rummet: Låt L vara den räta linjen genom som är parallell med
RÄTA LINJER OCH PLAN Räta linjer i 3D-rummet: Låt L vara den räta linjen genom punkten P = ( x, y, som är parallell med vektorn v = v, v, v ) 0. ( 3 P Räta linjens ekvation på parameterform kan man ange
Läs merEnklare matematiska uppgifter
Årgång 47, 1964 Första häftet 2457. ABC är en fix liksidig triangel. Linjerna AD och BE är parallella och skär linjerna BC och AC i D resp. E. Vidare är A 1, D 1, B 1 och E 1 mittpunkterna på sträckorna
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive
Läs merSF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1
Läs merKomposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.
Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln
Läs merOm för en reellvärd funktion f som är definierad på mängden D gäller följande
OPTIMERING PÅ KOMPAKTA OMRÅDEN. Om för en reellvärd funktion f som är definierad på mängden D gäller följande 1. D är en KOMPAKT mängd. funktionen f är KONTINUERLIG på D då antar f sitt största och sitt
Läs merTentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
Läs merSF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015
SF1626 Flervariabelanalys Bedömningskriterier till tentamen Måndagen den 16 mars 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det
Läs merMer om generaliserad integral
Föreläsning XI Mer om generaliserad integral Ex 64: Givet h(x) = ( x 2 5x + 2 ) e x/2. (a) Bestäm en p.f. till h(x). (b) Beräkna h(x)dx. (a) Vi har här en integrand som är en produkt av ett polynom av
Läs merRIEMANNSUMMOR. Den bestämda integralen definieras med hjälp av Riemannsummor. Låt vara en begränsad funktion,, reella tal och. lim.
RIEMANNSUMMOR Låt vara en begränsad funktion,, reella tal och. Den bestämda integralen definieras med hjälp av ä ä, ; lim. Om funktionen har en elementär primitivfunktion då är insättningsformeln (Newton-
Läs merEkvationer och system av ekvationer
Modul: Undervisa matematik utifrån problemlösning Del 4. Strategier Ekvationer och system av ekvationer Paul Vaderlind, Stockholms universitet Ekvationslösning är ett av de viktiga målen i skolmatematiken.
Läs merLOGARITMEKVATIONER. Typ 1. och. Typ2. Vi ska visa först hur man löser två ofta förekommande grundekvationer
LOGARITMEKVATIONER Vi ska visa först hur man löser två ofta förekommande grundekvationer Typ 1. log aa ff(xx) = nn och Typ2. log aa ff(xx) = log aa gg(xx) När vi löser logaritmekvationer måste vi tänka
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015
SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015 Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merTentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Läs merKvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Läs merINVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen
Läs merSF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
Läs mer2. Avgör om x och z är implicit definierade som funktion av y via följande ekvationssystem. x 3 + xy + y 2 + z 2 = 0 x + x 3 y + xy 3 + xz 3 = 0
ATM-Matematik Mikael Forsberg 734-41 3 31 För distans och campus Flervariabelanalys ma1b 14 1 Skrivtid: 9:-14:. Inga hjälpmedel, förutom den bifogade formelsamlingen. Lösningarna skall vara fullständiga
Läs merLektion 2. Funktioner av två eller flera variabler variabler
Lektion 2 Funktioner av två eller flera variabler variabler Innehål 1. Grundlägande topologi (10.1) 2. Funktioner av två variabler (12.1) Innehål 1. Grundlägande topologi (10.1) 2. Funktioner av två variabler
Läs merSF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
Läs merQuiz name: FV4 Date: 10/03/2015 Question with Most Correct Answers: #2 Total Questions: 11 Question with Fewest Correct Answers: #3
Quiz name: FV4 Date: 10/03/2015 Question with Most Correct Answers: #2 Total Questions: 11 Question with Fewest Correct Answers: #3 1. Vilka av följande påståenden är sanna för en dubbelintegral av en
Läs merVi har. x (xy2 ) + y ( yz2 ) + z (zx2 ) = y 2 z 2 + x 2 = x 2 + y 2 z 2, xy 2 yz 2 zx 2
Lektion 6, Flervariabelanals den februari 6.. Beräkna div F och rot F av F e + e. Divergensen och rotationen ges av div F F,,,, + + + +, rot F F,,,, e e e z, +,,,. rot F F,, e e e z z, z, z z z, + z, z
Läs merTentamen: Lösningsförslag
Tentamen: Lösningsförslag Onsdag 5 mars 7 8:-3: SF674 Flervariabelanalys Inga hjälpmedel är tillåtna. Max: 4 poäng. 4 poäng Avgör om följande gränsvärde existerar och beräkna gränsvärdet om det existerar:
Läs mervarandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.
PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät
Läs merFör att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999
Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan
Läs merLUNDS TEKNISKA HÖGSKOLA MATEMATIK. LÖSNINGAR FLERDIMENSIONELL ANALYS, FMA kl 8 13
LUNS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR FLERIMENSIONELL ANALYS, FMA40 04-0- kl 8. Vi börjar med att rita triangelskivan. Linjen genom, och, har ekvationen y x+, linjen genom, och, har ekvationen y 4
Läs merSF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016
SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.
Läs merockså en lösning: Alla lösningar, i detta fall, ges av
H009, Introduktionskurs i matematik Armin Halilovic TRIGONOMETRISKA EKVATIONER A) Ekvationen sin( x ) = a (och liknande ekvationer) Ekvationen sin( x ) = a har lösningar endast om a (eftersom sin( x )
Läs merLösningsförslag, preliminär version 0.1, 23 januari 2018
Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel
Läs merv0.2, Högskolan i Skövde Tentamen i matematik
v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Läs mer1. Beräkna volymen av det område som begränsas av paraboloiden z = 4 x 2 y 2 och xy-planet. Lösning: Volymen erhålles som V = dxdydz.
Lösningsförslag till tentamensskrivning i Matematik IV, F636(5B0,5B30). Tisdagen den januari 0, kl 400-900. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merGeneraliserade integraler. Definitionen. J amf orelsesatser. Vad skall vi j amf ora med? Absolutkonvergens Dagens amnen 1 / 10
Dagens ämnen 1 / 10 Dagens ämnen Generaliserade integraler. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. 1 / 10 Dagens ämnen Generaliserade integraler. Definitionen. Jämförelsesatser. 1
Läs merTENTAMEN HF1006 och HF1008
TENTAMEN HF006 och HF008 Datum TEN 6 mars 06 Tid 8:-: Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Inge Jovik Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan
Läs merStudietips inför kommande tentamen TEN1 inom kursen TNIU23
Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande
Läs merz = z 2. z = z 2 z /z 2 = 1 1 z = x + c z(x) = x + c = ln x + c + c 2 y(x) = ln y = 0 y(x) = c 2
Differentialekvationer II Modellsvar: Räkneövning 1 1. Lös differentialekvationen y = (y ) 2 med hjälp av substitutionen z(x) = y (x). Kommentar: detta är standard substitutionen för differentialekvationer
Läs merTentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
Läs merLösningar till Matematisk analys
Lösningar till Matematis analys 0820. Stationära punter. f (x, y) = 8x(x 2 y), f 2(x, y) = 4(y x 2 )). Vi ar alltså att f (x, y) = f 2(x, y) = 0 { x(x 2 y) = 0 y x 2 = 0. Första evationen ovan är uppfylld
Läs mer