Här finns en definition av gränsvärde (enligt Adams Calculus) av en funktion då x går mot ett tal a ( s.k. epsilon delta definition).

Storlek: px
Starta visningen från sidan:

Download "Här finns en definition av gränsvärde (enligt Adams Calculus) av en funktion då x går mot ett tal a ( s.k. epsilon delta definition)."

Transkript

1 GRÄNSVÄRDEN OCH KONTINUITET Här finns en definition av gränsvärde (enligt Adams Calculus av en funktion då går mot ett tal a ( s.k. epsilon delta definition. Definition. ( Cauchy Vi säger att funktionen f( har gränsvärdet A, då går mot talet a om följande gäller: Till varje ε > 0 (oavsett hur litet ε är finns det ett tal δ > 0 sådant att. funktionen f( är definierad för ( a δ, a ( a, a δ.. (0< a < δ f( A< ε Vi skriver då a f ( A (eller f( A då a Anmärkning. Talet δ i ovanstående definition är ( i allmänt beroende av ε så att vi kan skriva δ( ε istället. Anmärkning. Uttrycket 0< a < δ kan skrivas på ekvivalent sätt a < δ, a eller ( a δ, a ( a, a δ. Anmärkning. Lägg märke till att i ovanstående definition, på grund av kraven a, spelar det inte någon roll om funktionen f( är definierad i punkten a (Om f( är definierad i a då spelar det inte någon roll vilket värde funktionen har i punkten a På liknade sätt definieras ensidiga gränsvärden aa ff(, ff( aa samt gränsvärden då, och. (Vi anger definitioner för de här fallen samt oegentliga gränsvärden i slutet av den här stencilen Eempel. Visa med hjälp av definitionen att ( 0 av 0

2 Lösning: Låt ε > 0 vara ett reellt tal. Vi undersöker uttrycket f( A ssssss (* Eftersom är mindre än ε om är mindre än ε/ ser vi att vi kan t e välja δ ε ; då gäller f( < ε ε om 0 < 0 < δ. Vi har bevisat, enligt definitionen att 0 (. Vi ser att det är svårt att beräkna gränsvärden med hjälp av definitionen men, med hjälp av definitionen, härleds nedanstående räkneregler, som därefter används vid beräkning av olika typer av gränsvärden. Räkneregler:. Om aa ff( 0 och funktionen gg( är begränsad i en omgivning till punkten a [dvs. det finns ett konstant tal M så att gg( MMi omgivningen] då gäller aa ff(gg( 0. Om aa ff( A och gg( B, där A och B är reella tal, aa då gäller : ( ff( gg( AB aa ( ff( gg( AAAA aa ( ff( aa gg( AA BB, oooo BB 0. Om ff( gg( i en omgivning till a då är ff( gg( aa aa gränsvärdena eisterar. (om. INSTÄNGNINGSREGELN. Om ff( h( gg( och dessutom f ( g( A då är även h( A > a > a > a Anmärkning: Instängningsregeln framgår från egenskap eftersom av 0

3 f ( h( g( f ( h( g( A h( A Därför h( A > a > a > a > a > a Uppgift. Bevisa, med hjälp av definitionen, ovanstående räkneregler. ( Beviset finns i de flesta analysböcker Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande: aa Vänstergränsvärdet av funktionen f( i punkten aa aa Högergränsvärdet av funktionen f( i punkten aa Eempel. fförr < Låt f( fförr fförr > y Bestäm 0 a ff(, bb ff( ooooh cc ff( Svar: aa ff( bb ff( cc ff( Om de två ensidiga (enkelsidiga gränsvärden är lika av 0

4 ff( AA aa ff( AA aa då och endast då gäller ff( AA aa ( Alltså, llllll aa ff( eisterar endast om de ensidiga gränsvärdena är lika. Definition aanta att funktionen f ( är definierad i ett öppet intervall runt punkten a. Funktionen ff( är kontinuerlig i punkten a om aa Annars är den diskontinuerlig i punkten a. ff( ff(aa Eftersom aa ff( ff(aa är ekvivalent med aa ff( aa ff( ff(aa har vi en ekvivalent definition Definition b Funktionen ff( är kontinuerlig i punkten a om ff( ff( ff(aa aa aa I teoretiska problem används ofta följande ε-δ definition av kontinuerliga funktioner: Definition e Funktionen ff( är kontinuerlig i punkten a om till varje ε > 0 finns det ett tal δ > 0 sådant att ( a < δ ( f( f(a< ε Vänsterkontinuerlig och högerkontinuerlig funktion Definition c Funktionen ff( är vänsterkontinuerlig i punkten a om ff( ff(aa aa Definition d Funktionen ff( är högerkontinuerlig i punkten a om ff( ff(aa aa av 0

5 KONTINUITET I ETT INTERVALL OCH PÅ HELA DEFINITIONSMÄNGDEN Definition f En funktion är kontinuerlig i intervallet (a, b om den är kontinuerlig i varje 0 i (a, b.en funktion är kontinuerlig i intervallet [a, b] om den är kontinuerlig i varje 0 i (a, b samt högerkontinuerlig i a och vänsterkontinuerlig i b. Vi säger att en funktion är kontinuerlig funktion om den är kontinuerlig i hela definitionsmängden. Elementära funktioner: De elementära funktionerna är polynom, rationella funktioner, potensfunktioner, eponentialfunktioner, logaritmfunktioner, trigonometriska funktioner, inversa trigonometriska funktioner och alla kombinationer av dessa med hjälp av de fyra räknesätten och sammansättning. ln( sin Eempelvis är y är en elementär funktion medan 8 fförr < f( fförr är inte elementär. fförr > VIKTIGT: Sats: Alla elementära funktioner är kontinuerliga funktioner ( i sina definitionsmängder. n Alltså är y, n positivt heltal, n y, 0 n positivt heltal, p y, > 0 p ett reellt tal (men ej heltal, y sin, y cos, sin π cos y tan(, nπ, y cot(, nπ, cos sin y, y, y e, y a, a > 0, y arcsin,, y arccos,, y arctan, y arccot kontinuerliga funktioner (i sina definitionsmängder. Samma gäller med alla kombinationer av dessa med hjälp av de fyra räknesätten och sammansättning Om ff( och gg( är kontinuerliga då är av 0

6 ff(gg(, ff( gg( och ff( gg( ddärr gg( 0 också kontinuerliga funktioner. Eempelviss är en kontinuerlig funktion om ±. Eempel Bestäm. ff(. ff(. ff(. ff( ( oooo dddddd ffffffffff och avgör om ff( är kontinuerlig i punkten då fförr < a f ( / fförr fförr > fförr < b f ( fförr fförr > Svar: a. ff(. ff( /. ff( y. Eftersom de ensidiga gränsvärden är lika ff( ff( finns det 0 ff(. Funktionen är inte kontinuerlig i punkten eftersom, t e, ff( ff(. b. ff( 6 av 0

7 . ff(. ff(. Eftersom dem ensidiga gränsvärden är lika ff( ff( finns det ff(. y Funktionen är kontinuerlig i punkten eftersom ff( ff( ff(. Eempel. ( Viktigt eempel Låt ff(. Funktionen ff( är inte f(/ definierad i punkten 0. Bestäm med hjälp av funktionens graf följande gränsvärden a 0 c bb 0 dd Svar: aa 0 Alternativt kan vi skriva om 0. { Vi kan använda föregående resultat som minnesregel " "; endast som 0 minnesregel eftersom det är inte definierat att dela med 0. } bb 0 Alternativt kan vi skriva om 0. 7 av 0

8 { Vi kan memorera resultat som " 0 " men endast som minnesregel eftersom det är inte definierat att dela med 0. } c dd 0 0 { Vi kan memorera resultat som " 0"} Beräkning av gränsvärdena I samband med beräkning av gränsvärdena kallar vi följande uttryck för obestämda uttryck: 0 0,, 0,, 00,, 0. När vi får ett obestämt uttryck vid direkt beräkning av ett gränsvärde, skriver vi om funktionen, förenklar och därefter försöker igen beräkna gränsvärdet. Ibland krävs det kompletterande undersökningar, variabelbyten, L Hospitals regel o dyl. Nedan finns några eempel. A Rationella uttryck där går mot ett reellt tal Eempel. Beräkna följande gränsvärde >. Lösning: Om vi substituerar direkt i 0 får vi det obestämda uttrycket. 0 Därför förkortar vi först bråket med. [ Vi kan faktorisera täljaren och nämnaren, och förkorta bråket därefter. Alternativt, kan vi dela täljaren och nämnaren med (-.] > ( ( > ( > Svar: > Eempel. Beräkna följande gränsvärde 8 av 0

9 > Lösning: Om vi substituerar i. får vi det obestämda uttrycket 0 0. Detta betyder att både, täljaren och nämnaren är delbara med (-. Det är inte uppenbart hur vi ska faktorisera täljaren. Därför delar vi ( med (- ( polynomdivision och får ( / (- ( kontrollera själv Nu har vi ( ( > ( ( > > Svar: Uppgift. Beräkna följande gränsvärden: Svar: 0 / -/ -/ 0 6 -/ /0-0 / /7 / B Rationella uttryck där går mot Vid beräkning av gränsvärdena där går mot utnyttjar vi ofta att av 0

10 00 om Eempel 6. Beräkna a > b > c > Lösning: Vi bryter ut i täljaren den potens som har störst eponent och samtidigt nämnarens största potens och därefter förkortar bråket. ( Alternativ: Man kan i början förkorta bråket med största potensen > b ( ( ( med förkortar > > 0 ( ( > c ( ( ( med förkortar > > > ( ( ( ( med förkortar a > > 0 av 0

11 Svar: a b 0 c Uppgift. Beräkna följande gränsvärden: a 00 > 00 b > 00 c > d > e > f > a Lösning: 00 > 00 > 00 ( 00 ( 00 > 00. Svar: a / b 0 c d e f 0 C Rotuttryck Eempel 7. Beräkna följande gränsvärde Lösning: >. (Anmärkning: Om vi substituerar får vi uttrycket 0. Därför förenklar vi uttrycket 0 först och substituerar efter förenkling. Eempel 8. Beräkna följande gränsvärde a > b > c 6 > Lösning: av 0

12 a > ( ( ( > > ( ( ( > b ( ( > > ( ( > ( ( ( > ( ( 8 c 6 > > 6 ( > (6 ( > ( ( > ( 8 Svar a b 8 c 8 Uppgift. Beräkna följande gränsvärde a 0 b c d a Lösning: 0 0 ( ( ( ( 0 ( 0 Svar a / b c -/ d 60 Standardgränsvärdet av 0

13 ssssssss ( AAAAAA: VVVVVVVVVVVVVV ärr ii rrrrrrrrrrrrrrrr. 0 Eempel. Beräkna ssssss 0 Lösning: Direkt substitution ger ett obestämt uttryck 0 0. VVVV ssssssssssssssssssssssss tt (ssssss ärr eeeeeeeeeeeeeeeeeeee mmmmmm tt/. Dessutom 0 ärr eeeeeeeeeeeeeeeeeeee mmmmmm tt 0 tt 0 ssssssss tt/ tt 0 ssssssss tt ssssssss [eeeeeeeeeeeeeeee, ssssssssssssssssssssännnnnnärrrrrrrr] tt 0 tt Svar: ssssss / 0 Uppgift. Beräkna följande gränsvärden aa 0 ssssss(8 bb ssssss(tt tt 0 ssssss(8tt cc tttttt(yy yy 0 ssssss(yy dd yy 0 tttttt(yy ssssss(yy ee ssssss(hssssssss h 0 h Tipps för d Använd formeln ssssssss ssssssss cccccc( aabb ssssss(aabb ff ssssssss ππ ππ ssssss(aa g aa aa Lösning ( Lägg märke till att, för alla uppgifter, direkt substitution ger det obestämda uttrycket 0. 0 a 0 ssssss( ssssss(8 8 8 bb ssssss(tt tt 0 ssssss(8tt tt 0 ssssss(tt tt ssssss(8tt tt 8 av 0

14 tttttt(yy c yy 0 ssssss(yy d Svar: / yy 0 ssssss(yy ccccccyy ssssss(yy yy 0 ccccccyy ssssss(yy yy ssssss(yy yy ssssss(hssssssss cccccc( e h 0 h h 0 h ssssssh h [cccccc( h ssssss h h 0 h ] cccccc( 0 cccccccc Anmärkning: Vi har faktiskt i upp. e härlett och bevisat att derivatan av ssssssss är cccccccc. f För att få det standardgränsvärdet substituerar vi ππ tt och får ππ ssssssss ππ tt 0 ssssss(tt ππ tt [ vvvv tttttt bbbbbbbb ttttå pppppppppppppppp ππ] ssssss(ttππ tt 0 tt [ffffffffffffff: ssssss(ππ tt ssssssss] ssssss(tt tt 0 tt ssssss(aa g aa aa [ Substitution aa tt ] ssssssss tt 0 tt Uppgift 6. Kan man bestämma tal a så att funktionen ff( blir kontinuerlig i punkten om fförr < a f ( fförr aaaa fförr > aaaa fförr < b f ( fförr fförr > aaaa fförr < c f ( fförr fförr > a Lösning : av 0

15 Vänstergränsvärde i punkten : [ Lägg märke till att < ii detta fall, för, och därför väljer vi f(. ] Högergränsvärde i punkten : ff( ( ( Lägg märke till att > den här gången, för, och därför väljer vi f( a. Funktionens värde i punkten : ff( aaaa aa ff( Funktionen är kontinuerlig i punkten om Detta är sant om a. ff( ff( ff( Alltså är funktionen f( kontinuerlig i punkten om a. Svar : a Funktionen f( är kontinuerlig i punkten om a. b Funktionen f( är kontinuerlig i punkten om a. c Det finns inte a så att funktionen f( blir kontinuerlig i punkten. Här anger vi definitioner av olika typer av gränsvärden: FORMELLA DEFINITIONER AV HÖGER_ OCH VÄNSTERGRÄNSVÄRDEN Definition. ( Högergränsvärde Låt A och a vara reella tal. Vi säger att funktionen f( har högergränsvärdet A, då går mot a om följande gäller: Till varje (" litet tal" ε > 0 finns det ett tal δ > 0 så att. funktionen f( är definierad för (a, a δ. (a, a δ f( A< ε av 0

16 Vi skriver då a f ( A Definition. ( Vänstergränsvärde Låt A och a vara reella tal. Vi säger att funktionen f( har vänstergränsvärdet A, då går mot a om följande gäller: Till varje ( " litet tal" ε > 0 finns det ett tal δ > 0 så att. funktionen f( är definierad för (a δ, a och (a δ, a f( A< ε Vi skriver då a f ( A OBEGRÄNSADE FUNKTIONER. OEGENTLIGA GRÄNSVÄRDEN I ovanstående definitioner har vi antagande att A är ett tal. Nu definierar vi funktionens oegentliga gränsvärden och. Låt a vara ett reell tal. Låt f vara en reell funktion med definitionsmängden D f. Antag vidare att varje omgivning av punkten a innehåller andra punkter än a som ligger i funktionens definitionsmängd D f. Definition. Vi säger att funktionen f(, då går mot Till varje ( "stort tal" M > 0 finns det ett tal δ > 0 så att. funktionen f( är definierad för (a, a δ och. (a, a δ f( > M a om följande gäller: Vi skriver då a f ( Definition 6. Vi säger att funktionen f(, då går mot Till varje tal M < 0 finns det ett tal δ > 0 så att. funktionen f( är definierad för (a, a δ a om följande gäller: 6 av 0

17 och : (a, a δ f( < M Vi skriver då a f ( Om vi i de två ovanstående definitionerna ersätter (a, a δ med (a δ, a får vi definitioner för oegentliga gränsvärden då går mot a : a f ( och Eempel: Låt f ( ( a f (. Då gäller f (, f ( ( Den vertikala linjen kallas funktionens lodrät ( vertikal asymptot. GRÄNSVÄRDEN DÅ ± Definition 7a. Låt A vara ett reell tal. Vi säger att funktionen f( har gränsvärdet A, då går mot om följande gäller: Till varje ε > 0 finns det ett tal M > 0 så att. funktionen är definierad för > M och > M f( A < ε Vi skriver då f ( A På liknande sätt definieras betydelse av uttrycket f ( A. 7 av 0

18 Definition 7b. Låt A vara ett reell tal. Vi säger att funktionen f( har gränsvärdet A, då går mot om följande gäller: Till varje ε > 0 finns det ett tal M så att. funktionen är definierad för < M och. < M f( A < ε Vi skriver då f ( A Eempel: Låt sin f ( Då gäller f ( 0 och f ( 0. ( Den horisontella ( vågräta linjen y0 kallas funktionens vågrät ( horisontell asymptot. Eempel: Låt f ( sin I det här fallet eisterar inte gränsvärdet av f ( sin då > eftersom i varje interval ( b, antar funktionen f ( sin alla värden mellan och Eempel. Bevisa med hjälp av definitionen att > Bevis: Låt ε >0. Vi försöker finna ett (stort tal M ( som beror av ε så att 8 av 0

19 < ε för alla >M. Vi har < ( om > Sista gäller om > ( som vi kan anta eftersom ->. Alltså < Istället ε < kan vi därför lösa enkla olikheten ε < Eftersom ε < om ε > kan vi ta, ma( ε M. Då blir ε < < för >M. Alltså för varje ε >0 finns det M [Vi kan välja t e, ma( ε M ] sådant att < ε om M >. Enligt definitionen betyder detta att > vilket skulle bevisas. Uppgift 7. Bevisa med hjälp av definitionen att > Tips. Se ovanstående eempel Till slut anger vi definitionen för uttrycken av typ ± ± ( f. Definition 8. Vi säger att funktionen f( går mot då går mot om följande gäller: Till varje tal K > 0 ( oavsett hur stort är K finns det ett tal M > 0 så att. funktionen är definierad för >M av 0

20 och. > M f( >K Vi skriver då f ( Definition. Vi säger att funktionen f( går mot då går mot om följande gäller: Till varje tal K finns det ett tal M > 0 så att. funktionen är definierad för >M och. > M f( < K Vi skriver då f ( På liknande sätt definieras uttryck f ( och f ( Eempel: Låt f (. då gäller f ( och f (. 0 av 0

Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande:

Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande: GRÄNSVÄRDEN OCH KONTINUITET Ensidiga gränsvärden. I nedanstående uppgifter betecknar vi enligt följande: aa Vänstergränsvärdet av funktionen f( i punkten aa aa Högergränsvärdet av funktionen f( i punkten

Läs mer

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a.

Notera att ovanstående definition kräver att funktionen är definierad i punkten x=a. SAMMANFATTNING OM KONTINUERLIGA FUNKTIONER Definition (Kontinuitet i en punkt { f ( är kontinuerlig i punkten a} { lim f ( a } a eller ekvivalent: { f ( är kontinuerlig i punkten a} { lim lim f ( a a a+

Läs mer

lim 1 x 2 lim lim x x2 = lim

lim 1 x 2 lim lim x x2 = lim Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

TMV225 Kapitel 3. Övning 3.1

TMV225 Kapitel 3. Övning 3.1 TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

Tips : Vertikala asymptoter kan finnas bland definitionsmängdens ändpunkter och bland diskontinuitetspunkter.

Tips : Vertikala asymptoter kan finnas bland definitionsmängdens ändpunkter och bland diskontinuitetspunkter. ASYMPTOTER Definition. Den räta linjen är en lodrät (vertikal) asmptot till funktionen om å dvs om minst en av följande påståenden gäller lim, lim, lim lim Tips : Vertikala asmptoter kan finnas bland definitionsmängdens

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim 0. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 5 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a. . Beräkna följande gränsvärden: a. lim 2 5 + 6 2 2. b. lim 2 5 + 4 3 + 2 4 2. c. lim. d. lim 2 3 + 3 2 + 4 + 5 2 + + 3 + 2 2 + 3 + 4. 2. Kan funktionen f definieras i punkten = så att f blir kontinuerlig

Läs mer

INVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen

Läs mer

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Gränsvärden Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Innehåll Introduktion 3 2 Gränsvärden 4 2. Gränsvärden då går mot.................... 4 2.2 Gränsvärden då går mot a.....................

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK

KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK ELIN GÖTMARK MATS JOHANSSON INSTITUTIONEN FÖR MATEMATIK OCH MATEMATISK STATISTIK UMEÅ UNIVERSITET Date: 3 augusti 202.

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

DUBBELINTEGRALER. Rektangulära (xy) koordinater

DUBBELINTEGRALER. Rektangulära (xy) koordinater ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim

Uppgift 1. Bestäm definitionsmängder för följande funktioner 2. lim Tentamen (TEN) i MATEMATIK, HF 7 dec 7 Tid :-7: KLASS: BP 7 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken typ som helst, en formelsamling och ett bifogat formelblad. Denna lapp lämnar du in

Läs mer

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

Kap Inversfunktion, arcusfunktioner.

Kap Inversfunktion, arcusfunktioner. Kap 3. 3.5. Inversfunktion, arcusfunktioner. 30. (A) Förenkla uttrycken så långt som möjligt a. ln 8 ln + ln 8 ln + ln b. ln 3 log 0 3 log 0 e + 3 ln 3 log 3 e 30. (A) Lös ekvationerna a. e x = e x b.

Läs mer

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet.

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. Kap. 2. 2.2. Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. 20. Skissera definitionsmängden till följande funktioner: A a. f(,) = ln ( 2 2 ) A b.

Läs mer

Gränsvärdesberäkningar i praktiken

Gränsvärdesberäkningar i praktiken Gränsvärdesberäkningar i praktiken - ett komplement till kapitel i analsboken Jonas Månsson När man beräknar gränsvärden använder man sig av en rad olika strategier beroende på det givna problemet. Avsikten

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller avbildning ) rån en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 2 Institutionen för matematik KTH 31 augusti 2016 Att göra denna vecka Översikt över modul 1 Funktion Definitionsmängd Värdemängd Udda, jämn Begränsad Absolutbelopp, Trigonometri, Polynom Gränsvärde

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten) Inga toabesök eller andra raster under den här kontrollskrivningen.

Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten) Inga toabesök eller andra raster under den här kontrollskrivningen. Kontrollskrivning i Matematik 1, HF1903, oktober 017, kl 815 1000 Version A Hjälpmedel: Endast bifogade formelblad (miniräknare är inte tillåten Inga toabesök eller andra raster under den här kontrollskrivningen

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 8 jan 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer

TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic

TENTAMEN 8 jan 2013 Tid: Kurs: Matematik 1 HF1901 (6H2901) 7.5p Lärare:Armin Halilovic TENTAMEN 8 jan 0 Tid: 08.5-.5 Kurs: Matematik HF90 (6H90) 7.5p Lärare:Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson Matematikcentrum Matematik BASPROBLEM I ENDIMENSIONELL ANALYS Jan Gustavsson. Algebraiska förenklingar.. Reella andragradsekvationer.. Enkla rotekvationer - eventuellt med falsk rot.. Enkla absolutbeloppsproblem.

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING XII. Föreläsning XII. Mikael P. Sundqvist Föreläsning XII Mikael P. Sundqvist Vad handlar gränsvärden om? Det är en kamp mellan epsilon (ε) och delta (δ) analystens främsta verktyg! Klicka här för bild på Barry Simon Gränsvärde av f (x) då x +

Läs mer

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 = Moment.5,.5.,.5.,.5. Viktiga eempel.0,.,.,.,.,.5,.,.7 Övningsuppgifter.8,.0 abc Inversfunktioner Givet: y = f(), y uttryckt i Sökt : = g(y), uttryckt i y När kan man lösa ut som funktion av y? Sats. Om

Läs mer

Svar till S-uppgifter Endimensionell Analys för I och L

Svar till S-uppgifter Endimensionell Analys för I och L Svar till S-uppgifter Endimensionell Anals för I och L - 00 S 600 = 3 3 5 3850 = 5 7 847 = 7 största gemensamma delare till 600 och 3850: 5 minsta gemensamma multipel till 3850 och 847: 5 7 S a) +6+9 b)

Läs mer

Lektion 1, Envariabelanalys den 8 september ε < 1 < ε för alla x > N. ( ) I vårt exempel är f(x) = 1/x, så vi ska alltså ta fram ett N så att

Lektion 1, Envariabelanalys den 8 september ε < 1 < ε för alla x > N. ( ) I vårt exempel är f(x) = 1/x, så vi ska alltså ta fram ett N så att Lektion, Envariabelanals den 8 september 999 = 0 Låt oss rita ut alla punkter i talplanet som har -koordinat nära det förmodade gränsvärdet 0 Vi får då en mängd som i figuren till höger Med nära 0 menar

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

Ledtrå dår till lektionsuppgifter

Ledtrå dår till lektionsuppgifter Ledtrå dår till lektionsuppgifter Allmänna råd vid lösning av lektionsuppgifter: Försök inledningsvis att lösa uppgiften på egen hand, genom att omsätta innehållet i den tillhörande föreläsningen samt

Läs mer

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar

TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i

Läs mer

Svar till S-uppgifter Endimensionell Analys för I och L

Svar till S-uppgifter Endimensionell Analys för I och L Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.

Läs mer

6.2 Implicit derivering

6.2 Implicit derivering 6. Implicit derivering 6 ANALYS 6. Implicit derivering Gränsvärden, som vi just tittat på, är ju en fundamental del av begreppet derivata, och i mattekurserna i gymnasiet har vi roat oss med att hitta

Läs mer

Uppföljning av diagnostiskt prov HT-2016

Uppföljning av diagnostiskt prov HT-2016 Uppföljning av diagnostiskt prov HT-0 Avsnitt Ungefärligen motsvarande uppgifter på diagnosen. Räknefärdighet. Algebra, ekvationer, 8 0. Koordinatsystem, räta linjer 8 0. Funktionerna ln och e.. Trigonometri

Läs mer

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: Tentamen 010-10-3 : Lösningar 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall: x 5 0 och 3 x > 0 x 5 och x < 3, en motsägelse, eller x 5 0 och

Läs mer

ARCUSFUNKTIONER. udda. arcsin(x) [-1, 1] varken udda eller jämn udda. arccos(x) [-1, 1] [ 0, π ] arctan(x) alla reella tal π π. varken udda eller jämn

ARCUSFUNKTIONER. udda. arcsin(x) [-1, 1] varken udda eller jämn udda. arccos(x) [-1, 1] [ 0, π ] arctan(x) alla reella tal π π. varken udda eller jämn Arcusunktioner ARCUSFUNKTIONER Deinitionsmängd Värdemängd derivatan udda/jämn arcsin() [-, ] [, ] arccos() [-, ] [ 0, ] arctan() alla reella tal (, ) arccot() alla reella tal ( 0, ) + + udda varken udda

Läs mer

INTEGRALER AV TRIGONOMETRISKA FUNKTIONER. Viktiga trigonometriska formler vid beräkning av integraler: (F1) (F2) (F3)

INTEGRALER AV TRIGONOMETRISKA FUNKTIONER. Viktiga trigonometriska formler vid beräkning av integraler: (F1) (F2) (F3) INTEGRALER AV TRIGONOMETRISKA FUNKTIONER Vikiga rigonomeriska formler vid beräkning av inegraler: ssssss + cccccc = cccccc ssssss = cccccc ssssssssssssss = ssssss cccccc = +cccccc ssssss = cccccc ssssssssssssssss

Läs mer

TENTAMEN HF1006 och HF1008

TENTAMEN HF1006 och HF1008 TENTAMEN HF006 och HF008 Datum TEN 6 april 08 Tid 8- Analys och linjär algebra, HF008 (Medicinsk teknik), lärare: Erik Melander, Analys och linjär algebra, HF008 (Elektroteknik), lärare: Marina Arakelyan

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

TENTAMEN TEN2 i HF1006 och HF1008

TENTAMEN TEN2 i HF1006 och HF1008 TENTAMEN TEN i HF006 och HF008 Moment TEN (analys) Datum 5 april 09 Tid 8- Lärare: Maria Shamoun, Armin Halilovic Eaminator: Armin Halilovic Betygsgränser: För godkänt krävs0 av ma 4 poäng För betyg A,

Läs mer

Kapitel 7. Kontinuitet. 7.1 Definitioner

Kapitel 7. Kontinuitet. 7.1 Definitioner Kapitel 7 Kontinuitet 7.1 Definitioner Vi har sett på olika typer av funktioner. Vi skall fortsätta att undersöka dem, men ur en ny synvinkel. Vår utgångspunkt är nu att försöka undersöka om de är sammanhängande.

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal.

Notera att tecknet < ändras till > när vi multiplicerar ( eller delar) en olikhet med ett negativt tal. OLIKHETER Egenskaper:.Om a < b då gäller a+ c < b +c. Om a < b < c då gäller a+d < b+d < c+d. Om a < b och k > 0 då gäller ka < kb. 4. Om a < b och k < 0 då gäller ka > kb. Notera att tecknet < ändras

Läs mer

Matematik 1. Maplelaboration 1.

Matematik 1. Maplelaboration 1. Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. Före laborationen: Bekanta Dig med innehållet på sid 3. Ögna igenom de genomräknade exemplen 8 på sid 4 7. Använd PoP (papper och

Läs mer

LOGARITMEKVATIONER. Typ 1. och. Typ2. Vi ska visa först hur man löser två ofta förekommande grundekvationer

LOGARITMEKVATIONER. Typ 1. och. Typ2. Vi ska visa först hur man löser två ofta förekommande grundekvationer LOGARITMEKVATIONER Vi ska visa först hur man löser två ofta förekommande grundekvationer Typ 1. log aa ff(xx) = nn och Typ2. log aa ff(xx) = log aa gg(xx) När vi löser logaritmekvationer måste vi tänka

Läs mer

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999

För att uttrycka den primitiva funktionen i den ursprungliga variabeln sätter vi in θ = arcsin 2x. Lektion 14, Envariabelanalys den 23 november 1999 Lektion 4, Envariabelanalys den november 999 6.. Beräkna d 4. Det första vi observerar i integralen är uttrycket i nämnaren, 4. När ett uttryck av den här typen förekommer i en rationell integrand kan

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

TNA003 Analys I för ED, MT, KTS

TNA003 Analys I för ED, MT, KTS TNA003 Analys I för ED, MT, KTS Litteraturkommentarer till föreläsningarna VT1 2017 Sixten Nilsson TNA003 FÖ 1: Kap 3.1 3.2 Litteraturkommentarer 3.1 Gränsvärdesidén Skilj på de två typerna av gränsvärden.

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2.

Lektion 6, Envariabelanalys den 14 oktober Låt oss krympa f:s definitionsmängd till en liten omgivning av x = x 2. Lektion 6, Envariabelanals den 4 oktober 999 Låt f vara en kontinuerligt deriverbar funktion vars graf är återgiven i figuren till höger. Besvara följande frågor. Låt oss krmpa f:s definitionsmängd till

Läs mer

Några saker att tänka på inför dugga 2

Några saker att tänka på inför dugga 2 LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

Lösningsskisser för TATA

Lösningsskisser för TATA Lösningsskisser för TATA 26-3-3. Funktionen f() = + 3 2 ln( + 3 2 ) är definierad för alla R oc ar derivatan f () = 3 vilket ger följande teckentabell: 2 6 + 3 2 = 92 2 + 3 + 3 2 = 9( )( 3 ) + 3 2, 3 +

Läs mer

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER

VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan

Vi definierar addition av två vektorer och multiplikation med en reell skalär (tal) λλ enligt nedan ORTOGONALA VEKTORER OCH ORTONORMERADE (ORTONORMALA) BASER I R n INLEDNING ( repetition om R n ) Låt RR nn vara mängden av alla reella n-tipplar (ordnade listor med n reella tal) dvs RR nn {(aa, aa,, aa

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA047 Algebra och diskret matematik Något om trigonometriska funktioner Mikael Hindgren 7 oktober 08 Enhetscirkeln Definition (Vinkelmåttet radianer) l.e. Den vinkel som motsvarar en båge med längden l.e.

Läs mer

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59 Moment.0-. Viktiga exempel Övningsuppgifter Ö.9-., Ö.5, Ö.55, Ö.59 Funktioner Definition. En funktion y = f(x) är ett samband mellan variablerna x och y, sådant att ett x-värde motsvaras av högst ett värde

Läs mer

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b

Läs mer

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018 Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU22

Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Studietips inför kommande tentamen TEN1 inom kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.:

MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.: MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälpmedel: inga A.Heintz Telefonvakt: Jacob Leander, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats. Formulera

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Lösningsförslag, preliminär version 0.1, 23 januari 2018

Lösningsförslag, preliminär version 0.1, 23 januari 2018 Lösningsförslag, preinär version 0., 3 januari 08 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel

Läs mer

v0.2, Högskolan i Skövde Tentamen i matematik

v0.2, Högskolan i Skövde Tentamen i matematik v0., 08-03-3 Högskolan i Skövde Tentamen i matematik Kurs: MA5G Matematisk analys MA3G Matematisk analys för ingenjörer Tentamensdag: 08-0-03 kl 4:30-9:30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Instuderingsfrågor för Endimensionell analys kurs B1 2011 Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp

Läs mer

arcsin(x) udda ( x) varken udda eller jämn alla reella tal ( 0, ) 1. y=a 1 x udda/jämn Värdemängd derivatan Definitionsmängd Arcusfunktioner

arcsin(x) udda ( x) varken udda eller jämn alla reella tal ( 0, ) 1. y=a 1 x udda/jämn Värdemängd derivatan Definitionsmängd Arcusfunktioner ARCUSFUNKTIONER Deinitionsmängd Värdemängd arcsin( [-, ] [, ] arccos( [-, ] [00, ] arctan( alla reella tal (, arccot( alla reella tal ( 0, derivatan udda/jämn udda varken udda eller jämn udda varken udda

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1.

LYCKA TILL! //Mattehjälpen. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Hej! Här kommer ett dokument till dig som pluggar inför envarre1. Det är viktigt att du inför tentan kan alla standardgränsvärden/derivator/primitiver utan till så att dessa inte stoppar dig på vägen mot

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014

TENTAMEN HF1006 och HF1008 TEN2 13 jan 2014 TENTAMEN HF00 och HF008 TEN jan 04 Anals och linjär algebra, HF008 (Medicinsk teknik), lärare: Richard Eriksson Anals och linjär algebra, HF008 (Elektroteknik), lärare: Inge Jovik, Linjär algebra och anals,

Läs mer

Lösningsskisser för TATA

Lösningsskisser för TATA Lösningsskisser för TATA4 7-3-7. Funktionen f() 5 arctan + 4 arctan(/), med den föreskrivna definitionsmängden D f { R : > }, ar derivatan f () 5 + () + 4 ( / ) + (/) + 4 4 + + (4 + 6 ) ( + )( + 4 ) Detta

Läs mer

en primitiv funktion till 3x + 1. Vi får Integralen blir

en primitiv funktion till 3x + 1. Vi får Integralen blir Avsnitt, Integraler 6b Beräkna integralen 4 + 3 Integranden är en rationell funktion som vi kan skriva som 4 + 3. 4 3 + 3 + 3. Vi delar upp integralen i två delar och integrerar delarna var för sig, 4

Läs mer

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.

e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är

Läs mer

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x)

Uppgift 1. (3p) a) Bestäm definitionsmängden till funktionen f ( x) c) Bestäm inversen till funktionen h ( x) Tentamen TEN, (analysdelen) HF9, Matematik atum: aug 9 Skrivtid: : - 8: Eaminator: Armin Halilovic 8 79 8 Jourhavande lärare: Armin Halilovic 8 79 8 För godkänt betyg krävs av ma poäng Betygsgränser: För

Läs mer