Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)
|
|
- Britt-Marie Samuelsson
- för 7 år sedan
- Visningar:
Transkript
1 Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen rec =, om < /, 0, om > /. Falning x() * y( ) = x( τ) y(τ) dτ x() * δ( a) = x( a) Allmännare x() * δ (n) ( a) = x (n) ( a) 05098
2 Fourierinegraler: Fourierserier och fourierinegraler x() = X(ω) e jω dω, X(ω) = x() e jω d, x() d = X(ω) dω (Synesekvaion) (Analysekvaion) (Parsevals relaion) L-periodiska fourierserier: Komplex varian: x() = cn e jn/l. n = (Synesekvaion) c n = L x() e jn/l d, <L> <L> sår för vilke som hels inervall av längd L. (Analysekvaion) Reell varian för reella x(): L <L> x() d = cn. n = (Parsevals relaion) x() = a 0 + ( an cos (n/l) + b n sin (n/l) ). n = a n = L x() cos (n/l) d, b n = L x() sin (n/l) d. <L> Samband mellan de komplexa och de reella koefficienerna (n 0, b 0 = 0): <L> a n = Re c n, b n = Im c n, c n = a n jb n, c n = a n + jb n. L x() d = a 0 4 <L> + ( an + b n ) n = (Parsevals relaion)
3 Fourierransformer Allmänna egenskaper: Funkion Transform Om x() Z(ω) så Z() x( ω) x() X ( ω ) e jω 0 x() X (ω ω 0 ) x( 0 ) e jω 0 X (ω) x(a), a 0 a X ω a x( ) X( ω) (x * y)( ) X(ω) Y(ω ) x( ) y() (X * Y)(ω ) d d x( ) jω X(ω) x() d n d x( ) n x() Sampling av x() med sampelavsånd T L-periodisk forsäning av x() j j n d dω X( ω ) (jω) n X(ω) d n dω n X( ω ) /T-periodisk forsäning av /T X(ω) Sampling av /L X(ω) med sampelavsånd /L
4 Speciella ransformer Funkion Transform δ() δ(ω) δ( 0 ) e jω 0 e jω 0 δ(ω ω 0 ) δ( 0 ) + δ( + 0 ) e jω 0 + e jω 0 = cos(ω 0 ) cos (ω 0 ) (δ(ω ω 0 ) + δ(ω + ω 0 )) δ( 0 ) δ( + 0 ) e jω 0 e jω 0 = i sin(ω 0 ) sin (ω 0 ) j(δ(ω ω 0 ) δ(ω + ω 0 )) δ( nt) /T δ(ω n/t) n = n = u() jω + δ(ω ) sign( ) jω rec (/P) sinc (/()) sinc( ) P sinc (Pω/()) rec (ω) rec (ω /()) u() jω + δ(ω ) sign( ) jω
5 Funkioner med raionella ransformer Konsanen a förusäs vara > 0 Funkion Transform δ (n) () (jω) n e a u() a + jω e ja sign j a + ω n e a (n )! u() (a + iω) n j n n e ja (n )! e a u( ) sign (a + ω) n a jω e ja sign i a ω ( ) n e a (n )! u( ) (a jω) n n e ja j n (n )! sign (a ω) n sign iω n (n )! sign (jω) n e a a e a sign sin a sign cos a sign a + ω jω a + ω a a ω jω a ω
6 Exempel: a. Lå x() =, då <, 0, då >. Beräkna dess fourierransform. Lösningskisser: En räfram möjlighe är 0 X(ω) = x() e jω d = ( + ) e jω d + 0 ( ) e jω d, där inegralerna sedan löses med hjälp av pariell inegraion. En annan a man observerar (ria fig och konrollera!) a x () = δ( + ) δ() + δ( ), sam a x() e jω d = x () e jω ( jω) d, (parialinegrera vå gånger och noera a de uinegrerade ermerna = 0, efersom x() e jω 0, då ±.) Man får sedan direk a x() e jω d = Dea om ω 0. För ω = 0; X(0) = ( jω) e jω = e jω + =0 e jω = = ω {ej + e j } = ω ( cos ω). ( ) d =, b. Besäm den komplexa och den reella fourierserieuvecklingen av den 3-periodiska forsäningen av funkionen x() ovan. Lösningsskiss: Analysekvaionen för fourierserier ger de komplexa koefficienerna 3/ c n = 3 x() e jn/3 d = 3 x() e jn/3 d = 3 X(n/3) = 3/ 3 = Enlig ovan = n ( cos (n/3)), n 0, c 0 = 3. Också den reella uvecklingens koefficiener kan avläsas här: 3 a n = Re c n = n ( cos (n/3)), n >, a 0 = 3, b n = Im c n = 0.
7 Exra övningar om fourierserier och -inegraler. Lå x() = sin + 3 cos 4 a. Verifiera a funkionen är -periodisk och uveckla den i reell respekive komplex -periodisk fourierserie. b. Verifiera a funkionen också är -periodisk och uveckla den i reell respekive komplex -periodisk fourierserie.. Lå x() = δ( 3) + (sin ) δ( /6). a. Besäm fourierransformen ill x(). b. Lå y() vara den 4-periodiska forsäningen av funkionen x(). Besäm y:s komplexa fourierseriekoefficiener. 3. Den 3-periodiska generaliserade funkionen x() har de komplexa fourierseriekoefficienerna c n = ( ) n. Besäm x(). 4. a. Besäm c n så a b. Besäm a n och b n så a cn e jn = e i inervalle < <. n = a 0 + (an cos n + b n sin n) = e i inervalle < < n = 5. a. Beräkna fourierransformen ill x() =, då <, 0, då <. b. Besäm de komplexa och de reella fourierseriekoefficienerna ill y(), den -periodiska forsäningen av x(). c. Besäm de komplexa och de reella fourierseriekoefficienerna ill z(), den -periodiska forsäningen av x(). d. Skissera graferna för y() och för z().
8 6. Lå x(), y(), z() och v() vara -periodiska funkioner. Deras grafer framgår av följande figurer: x() y() = 3 = = z() δ( + ) v() δ( ) a. Vilka samband finns mellan x (), y() och v(), mellan y () och z() och mellan z () och v()? b. Vilka samband finns mellan de komplexa fourierseriekoefficienerna a n, b n, c n och d n, n 0, för respekive funkioner? c. Använd resulae i b. för a skriva upp FS-koefficienerna ill x(). 7. Lå x() = rec cos a (Ria!) a. Verifiera a x () + a x() = (a sin a) ( δ( ) + δ( + ) ). b. Besäm koefficienerna i den komplexa fourierserieuvecklingen av den -periodiska forsäningen av x() för de fall då a ine är någo helal. c. Vilka är koefficienerna då a är e helal? 8. Beräkna fourierransformerna ill följande signaler: a. rec ( ), b. e cos, c. rec, d. sin rec, e. sinc, f. cos sinc, g. sinc * sinc.
9 9, Ur abell har vi a fourierranssformen av e a är /a e ω /(4a) (a > 0). Bersäm fourierransformerna ill: a. e, b. e e, c. e * e.
10 Svar: a. a 4 = 3, b =, övriga a- och b-koefficiener = 0, c = j, c = j,c 4 = c 4 = 3, övriga c n = 0. b. a = 3, b =, övriga a- och b-koefficiener = 0, c = j, c = j, c = c = 3, övriga c n = 0. (Ledning: Använd Eulers formler och synesekvaionen.) a. X(ω) = 3 e 3jω + e jω/6. (Ledning: Förenkla förs funkionen.) b. c n = 3 4 ( j)n + 8 ejn/. ( Obs a c n = 4 ( ) ) X n. 3. x() = 3 n = ( ) n δ( 3n/) (Ledning: Synesekvaionen ger x() = e j(n + )/3 = e j/3 e jn (/3), använd sedan idenieen n = 5a. c n = ( ) n e e ( jn) n = e jn/l = L n = 4 n = δ( nl) och a y() δ( a) = y(a) δ( a).) 4b. a n = ( ) n e e +n, b n = ( ) n+ e e n +n 5a. 4 ω 3 (sin ω ω cos ω), då ω 0, = 4 3, då ω = 0. 5b. c n = n 3 sin n n cos n, (n 0). c 0 = 3 ; 4 a n = n 3 sin n 4 n cos n, (n ). a 0 = 4 3 ; b n = 0. 5c. c n = n ( )n+, (n 0). c 0 = 3 ; 4 a n = n ( )n+, (n ). a 0 = 4 3 ; b n = 0. 5d. -periodisk forsäning periodisk forsäning 5
11 6a. x () = 3 y() 3 v(), y () = z(), z () = v(). 6b. För n 0: jn a n = 3b n 3 d n, jn b n = c n, jn c n = d n. 6c. d n = ( ) n a n = j ( )n n 3 ( n 6) för n 0. x() udda funkion a 0 = 0. 7b. c n = ( ) n a sin a (a n ) 7c. Om a = N: c N = c N =, övriga c n = 0. (Obs a den -periodiska forsäningen = cos N) 8a. / sinc (ω/(4)) e jω/ 8b. /(+(ω ) ) + /(+(ω + ) ) 8c. j[ω cos (ω/) sin ω/)]/ω 8d. j/ [ sinc ((ω + )/()) sinc ((ω )/())] 8e. j [ δ(ω + ) δ(ω )] 8f. / [rec ((ω + )/()) + rec ((ω )/())] 8g, rec ω/() 9a. jω e ω /4 9b. / e ω /8 9c. e ω /
7. Fouriertransformen
Insiuionen för maemaik, KTH 05088 Arbesmaerial 5 för 5B209/25:2/HT05/E.P. 7. Fourierransformen 7.. Informella härledningar av synes- och analysekvaionerna för fourierransformen 7.. Approximaion av godycklig
Läs merFouriermetoder för. Signaler och System I HT2007
Insiuionen för maemaik KTH Fouriermeoder för Signaler och Sysem I HT2007 Tryckdaum 07008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier....2
Läs merFouriermetoder för VT2008
Insiuionen för maemaik KTH Fouriermeoder för T VT008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier.... Lie om fel...6.3 Om orogonalie. Parsevals
Läs merFouriermetoder för Signaler och system I
Insiuionen för maemaik, KTH 05096 Arbesmaerial för 5B09/5:/HT05/E.P. Fouriermeoder för Signaler och sysem I Syfe med de här kursavsnie är a ge en orienering av en del i den maemaiska analysen, de s.k.
Läs merLösningar till Matematisk analys IV,
Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en
Läs merSignal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 207-04-9 Lokaler: G33, G35, TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.00 och 7.30 el 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs mer1. Geometriskt om grafer
Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den
Läs merDatorlaborationer i matematiska metoder E2, fk, del B (TMA980), ht05
Daorlaboraioner i maemaiska meoder E, fk, del B (TMA98), h5 Laboraionen är ej obligaorisk Den besår av re uppgifer som kan ge en bonuspoäng var vid enamina i maemaiska meoder, fk, del B, 5--6, vår 6 och
Läs merFÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)
p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre
Läs merSignal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB4 Tid: 00-08-8 Lokaler: TER Ansvarig lärare: Klas Nordberg besöker lokalen kl. 5.00 och 7.00 el 8634 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sax
Läs merDifferentialekvationssystem
3227 Differenialekvaionssysem Behållaren A innehåller 2 lier, behållaren B innehäller 3 lier och behållaren C 4 lier salvaen Vid idpunken är salhalen i behållaren A 4 g, i behållaren B 2 g och i behållaren
Läs merKap 7 Fouriertransformanalys av tidskontinuerliga signaler 1
Kap 7 Fourierransformanalys av idskoninuerliga signaler Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen
Läs mer7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
Läs mer{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1
ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är
Läs merTentamensskrivning i Matematik IV, 5B1210.
Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges
Läs merSystem, Insignal & Utsignal
1 Sysem, Insignal & Usignal Insignal x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem, al. en algorim, som för olika insignaler
Läs merSystem, Insignal & Utsignal
Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,
Läs mer9. Diskreta fouriertransformen (DFT)
Arbesmaerial 6, Signaler&Sysem I, 2003/E.. 9. Diskrea ourierransormen (DF) 9.1 eriodicie pulsåg Av 6.3(i), arb.mar.4, sid 50, ramgick a ourierransormen (F) av en unkion är e pulsåg X[k]δ( k/) med pulsavsånd
Läs meruhx, 0L f HxL, u t Hx, 0L ghxl, 0 < x < a
Vågekvaionen Vågekvaionen beskriver vågors ubredning vare sig de gäller ljudvågor, elekromagneiska vågor eller vibraioner i en sräng. Lå oss för enkelhes skull änka oss en horisonell uppspänd sräng som
Läs merPå föreläsningen går jag relativt snabbt igenom grunderna fourierserieutveckling av periodiska signaler, bild 2 7.
1 På föreläsningen går jag relaiv snabb igenom grunderna fourierserieuveckling av periodiska signaler, bild 7. Genomgångens syfe: En kor repeiion av begrepp som jag huvudsakligen ugår från a du känner
Läs merTENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B2/A , arctan x x 2 +1
LUNDS TENISA HÖGSOLA MATEMATI TENTAMENSSRIVNING ENDIMENSIONELL ANALYS DELURS B/A3, 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med fullsändiga moiveringar. Beräkna följande inegraler. (.3+.3+.4)
Läs merSIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1
SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk
Läs merSF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
Läs mer= (x, y) : x 2 +y 2 4, x 0, y (4r2 +1) 3 2
Tenamensskrivning i Maemaik IV, SF1636(5B11,5B13). Tisdagen den 1 januari 1, kl 14-19. Hjälpmedel: BETA, Mahemaics Handbook. Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa.
Läs merRepetitionsuppgifter
MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den
Läs merAnm 3: Var noga med att läsa och studera kurslitteraturen.
TNA- Maemaisk grundkurs Repeiionsuppgifer (inklusive förslag ill planeringsförslag sam faci) -- Sien Nilsson Kurshemsida: hp://websaff.in.liu.se/~sini/tna.hm Hänvisningar FN = Forsling Nemark: Anals i
Läs merKryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Läs merKURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))
Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Läs mer( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen
gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,
Läs merTENTAMEN HF1006 och HF1008
TENTMEN HF6 och HF8 Daum TEN 8 april Tid 8- nalys och linjär algebra, HF8 Medicinsk eknik), lärare: Jonas Senholm nalys och linjär algebra, HF8 Elekroeknik), lärare: Marina rakelyan Linjär algebra och
Läs merFunktionen som inte är en funktion
Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen
Läs merSignal- och bildbehandling TSBB14
Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs mer5. Några viktiga summations- och integrationsformler.
Institutionen för matematik, KTH 050928 Arbetsmaterial 4 för 5B209/25:2/HT05/E.P. 5. Några viktiga summations- och integrationsformler. Först en repetition: 5. Geometriska serier För godtyckliga komplexa
Läs merInstitutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA KF OCH F MHA AUGUSTI 2017
Insiuionen för illämpad mekanik, Chalmers ekniska högskola ösningar TENTMEN I HÅFSTHETSÄR KF OCH F MH 081 16 UGUSTI 017 Tid och plas: 8.30 1.30 i M huse. ärare besöker salen ca 9.30 sam 11.30 Hjälpmedel:
Läs merTeori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Läs merDiskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?
Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-
Läs mer( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =
gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:
Läs merKontrollskrivning i TSDT84 Signaler & System samt Transformer för D
Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2019-01-10 kl. 8.00-12.00 Lokal: KÅRA Lärare: Lasse Alfredsson, tel. 013-28
Läs merKontrollskrivning i TSDT84 Signaler & System samt Transformer för D
Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2018-10-26 kl. 14.00-18.00 Lokal: TER3, TERE Lärare: Lasse Alfredsson, tel.
Läs merAMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,
Läs merFÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén
FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av
Läs merOm antal anpassningsbara parametrar i Murry Salbys ekvation
1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara
Läs merGenom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000
Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns
Läs merFöreläsning 19: Fria svängningar I
1 KOMIHÅG 18: --------------------------------- Ellipsbanans soraxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 19: Fria svängningar I Fjäderkrafen
Läs merTransformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:
Läs merFacit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Läs merINTEGRALER AV TRIGONOMETRISKA FUNKTIONER. Viktiga trigonometriska formler vid beräkning av integraler: (F1) (F2) (F3)
INTEGRALER AV TRIGONOMETRISKA FUNKTIONER Vikiga rigonomeriska formler vid beräkning av inegraler: ssssss + cccccc = cccccc ssssss = cccccc ssssssssssssss = ssssss cccccc = +cccccc ssssss = cccccc ssssssssssssssss
Läs merReglerteknik AK, FRT010
Insiuionen för REGLERTEKNIK, FRT Tenamen 5 mars 27 kl 8 3 Poängberäkning och beygssäning Lösningar och svar ill alla uppgifer skall vara klar moiverade. Tenamen omfaar oal 25 poäng. Poängberäkningen finns
Läs merAMatematiska institutionen avd matematisk statistik
Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.
Läs merDemodulering av digitalt modulerade signaler
Kompleeringsmaeriel ill TSEI67 Telekommunikaion Demodulering av digial modulerade signaler Mikael Olofsson Insiuionen för sysemeknik Linköpings universie, 581 83 Linköping Februari 27 No: Denna uppsas
Läs meri(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Läs merTATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.
TATA 57/TATA8 8 augusti 26. Lösningar ) Lösning : Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger [ z + z ] Y (z) = z + z z 3 z 2 som i sin tur ger (efter ommöblering) Av
Läs merLösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Läs merSignal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Läs merEgenvärden och egenvektorer
Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en
Läs merTransformer och differentialekvationer (MVE100)
Chalmers tekniska högskola och Göteborgs universitet Matematik 25 januari 2011 Transformer och differentialekvationer (MVE100 Inledning Fouriertransformen Fouriertransform är en motsvarighet till Fourierserier
Läs merLaplacetransformen. Från F till L. Den odiskutabla populäriteten hos Fourierintegralen. f HtL - w t t, w œ R (1)
Från F ill L Laplaceransformen Den odiskuabla populärieen hos Fourierinegralen f HL - w, w œ R () har a göra med a den ger informaion om vilka frekvenser w som ingår i signalen f, och med vilken syrka.
Läs merDIGITALTEKNIK. Laboration D171. Grindar och vippor
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Håkan Joëlson 2006-01-19 v 1.3 DIGITALTEKNIK Laboraion D171 Grindar och vippor Innehåll Uppgif 1...Grundläggande logiska grindar Uppgif 2...NAND-grindens
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merLaboration 3: Växelström och komponenter
TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens
Läs merTentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Läs merTENTAMEN Datum: 12 mars 07. Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000, 6L3000, 6A2111 TEN 2 (Matematisk statistik )
VERSION A TENTAMEN Daum: mars 7 Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H, 6L, 6A TEN (Maemaisk saisik ) Skrivid: 8:5-:5 Lärare: Armin Halilovic Kurskod 6H, 6L, 6A Hjälpmedel: Miniräknare av vilken yp
Läs merSF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Läs merLaboration D182. ELEKTRONIK Digitalteknik. Sekvenskretsar. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Digitalteknik Ola Ågren v 4.
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Ola Ågren 2015-12-04 v 4.4 ELEKTRONIK Digialeknik Laboraion D182 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll Sidan 1. SR-låskres
Läs merKompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merLaboration D158. Sekvenskretsar. Namn: Datum: Kurs:
UMEÅ UNIVERSITET Tillämpad fysik och elekronik Digialeknik Lars Wållberg/Håkan Joëlson 2001-02-28 v 3.1 ELEKTRONIK Digialeknik Laboraion D158 Sekvenskresar Namn: Daum: Eposadr: Kurs: Sudieprogram: Innehåll
Läs merDT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merLösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Läs merFöreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Läs merLaborationstillfälle 4 Numerisk lösning av ODE
Laboraionsillfälle 4 Numerisk lösning av ODE Målsäning vid labillfälle 4: Klara av laboraionsuppgif 3. Läs förs een om differensmeoder och gör övningarna. Läs avsnie Högre ordningens differenialekvaioner
Läs merOm de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi
Läs merSteg och impuls. ρ(x) dx. m =
Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke
Läs merLektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2
Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer
Läs merOm exponentialfunktioner och logaritmer
Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merFrekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2
Frekvensanals Frekvenssvar Ssemeknik/Processreglering Föreläsning 8 Bode- och Nqisdiagram Sabilie och sabiliesmarginaler Läsanvisning: Process Conrol: 6. 6. Frekvensanals Sdera hr ssem reagerar på signaler
Läs merFREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30
Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:
Läs merKursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden
Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera
Läs mer2 Laboration 2. Positionsmätning
2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni
Läs merFOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.
Läs merTentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Läs merFöreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion
Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?
Läs merLösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Läs merVII. Om de trigonometriska funktionerna
Analys 360 En webbaserad analyskurs Grundbok VII. Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com VII. Om de rigonomeriska funkionerna (3) Inrodukion I de här kapile
Läs merKolla baksidan på konvolut för checklista Föreläsning 6
0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor
Läs merUlrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merKONTROLLSKRIVNING 3. Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version B Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad (som delas u i salen) Förbjudna
Läs mera) Beräkna arean av triangeln ABC då A= ( 3,2,2), B=(4,3,3) och C=( 5,4,3).
TENTAMEN -Jan-8, HF och HF8 Momen: TEN (Linjär algebra), 4 hp, skriflig enamen Kurser: Anals och linjär algebra, HF8, Linjär algebra och anals HF Klasser: TIELA, TIMEL, TIDAA Tid: 85-5, Plas: Campus Haninge
Läs merKurs: HF1012 Matematisk statistik Lärare: Armin Halilovic
KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna
Läs merExempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!
Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen
Läs merTentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Läs merMVE500, TKSAM Avgör om talserierna är konvergenta eller divergenta (fullständig motivering krävs). (6p) 2 n. n n (a) n 2.
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 07-08-4 kl. 4.00 8.00 Tentamen MVE500, TKSAM- Telefonvakt: Anders Hildeman 03 77 535 Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Läs merTillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
Läs merTentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Läs merAnsökan till den svenskspråkiga ämneslärarutbildningen för studerande vid Helsingfors universitet. Våren 2015
Ansökan ill den svenskspråkiga ämneslärarubildningen för suderande vid Helsingfors universie Våren 2015 Enheen för svenskspråkig ämneslärarubildning info-amneslarare@helsinki.fi fn 02-941 20606, 050-448
Läs merHur simuleras Differential-Algebraiska Ekvationer?
Hur simuleras Differenial-Algebraiska Ekvaioner? Jonas Elbornsson December 2, 2000 1 Inledning Dea är en sammanfaning av meoder för simulering av Differenial-Algebraiska Ekvaioner (DAE) för kursen i Modellering
Läs mer