Föreläsning 1 Reglerteknik AK
|
|
- Alf Viklund
- för 6 år sedan
- Visningar:
Transkript
1 Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016
2 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en värmebalans: y v y u v r = temp. i huset = tillförd effekt = temp. utomhus = önskad temp. T t = tillförd effekt - bortförd effekt
3 3 Introduktion Example (Temperaturreglering, fort.) d dt y(t) = β( u(t) α[y(t) v(t)] ) Förenkla genom att ta β = 1 (skalning). ẏ(t) + αy(t) = u(t) + αv(t) Kursen handlar om reglering (styrning) av Dynamiska System = Differentialekvationer! Dessa hanteras i första delen av kursen med hjälp av Laplacetransform
4 Laplacetransformen Regler: Y (s) = L { y(t) } = 0 y(t)e st dt i. L { d dt y(t)} = sy (s) y(0) ii. L { t 0 y(τ) dτ} = 1 s Y (s) iii. Faltning: L { t 0 g(τ)u(t τ) dτ} = G(s)U(s) iv. Slutvärdessatsen: lim y(t) = lim sy (s), t s 0 om lim y(t) existerar. t
5 Koppling till differentialekvationer Example { ÿ + a 1 ẏ + a 2 y = b 0 u + b 1 u y(0) = ẏ(0) = u(0) = 0 L = s 2 Y (s) + a 1 sy (s) + a 2 Y (s) = b 0 su(s) + b 1 U(s) Y (s) = b 0 s + b 1 s 2 U(s) + a 1 s + a }{{ 2 } Överföringsfunktion, G(s)
6 Koppling till differentialekvationer Överföringsfunktionen är sambandet mellan insignal och utsignal. u G(s) y Observera: Initialvärden = 0 Y (s) = G(s)U(s)
7 7 Poler Definition Systemets poler ges av rötterna till nämnarpolynomet hos överföringsfunktionen. Example s 2 + a 1 s + a 2 = 0 Example (Inverterad pendel) Har poler vid s = ± g/l.
8 Poler Example Karaktäristisk ekvation: s 2 + a 1 s + a 2 Rötter: λ 1, λ 2 Homogen lösning: y 0 (t) = c 1 e λ 1t + c 2 e λ 2t, λ 1 λ 2 Låt nu λ = x + iω, där x är realdelen och ω imaginärdelen. e λt = e xt[ cos(ωt) + isin(ωt) ] { 0, Re[λ] < 0, Vänster HalvPlan, Stabilt, Re[λ] > 0, Höger HalvPlan, Instabilt Im V.H.P. H.H.P. Re 8
9 9 Typsystem 1:a ordningens system Komplexa poler i V.H.P Amplitude 0.5 Amplitude Time (seconds) 3 x 104 Reell instabil pol Time (seconds) 100 Komplexa instabila poler Amplitude 2 1 Amplitude Time (seconds) Time (seconds)
10 10 Poler Example Bestäm utsignalen hos systemet: Lösning: ẏ + y = 20, y(0) = 0 L = sy (s) y(0) + Y (s) = 20 s = Y (s) = s s + 1 = 20[ 1 s 1 ] s + 1 = y(t) = 20 [ 1 e t] 20, t Pol i 1 i V.H.P., dvs stabilt
11 Nollställen Definition Systemets nollställen ges av rötterna till täljarpolynomet hos överföringsfunktionen. Example b 0 s + b 1 = 0 Nollställe i H.H.P. = 1 G(s) är instabilt = Svårt reglerproblem.
12 12 Impulssvar Y (s) = G(s)U(s) Faltning: = y(t) = t 0 g(τ)u(t τ) dτ Integralen är en viktad summa av gamla (0 τ t) insignaler (dynamik). Funktionen g(t) kallas impulssvaret. Example (Integrator) g(τ) = 1 G(s) = 1 s
13 13 Återkoppling v r=referenssignal Σ e Regulator u System y -1 Reglerfelet ges av e = r y. u = insignal System = diff. ekv. v = störning y = utsignal
14 14 Blockdiagram Regulator System r Σ e F (s) u G(s) y -1 = { Y (s) = G(s)F (s)e(s) E(s) = R(s) Y (s) = Y = GF R GF Y = [1 + GF ]Y = GF R
15 15 Återkopplade Systemets Överföringsfunktion [1 + GF ]Y = GF R Härifrån får vi ett samband för hur r(t) y(t). G(s)F (s) = Y (s) = R(s) 1 + G(s)F (s) }{{} G c(s) G c (s) kallas det återkopplade (closed loop) systemets överföringsfunktion.
16 16 Samband Referens till Reglerfel Regulator System r Σ e F (s) u G(s) y -1 Y (s) = G(s)F (s)e(s) Härifrån får vi ett samband för hur r(t) e(t). = E(s) = G(s)F (s) R(s)
17 17 Referens-signal till Insignal Regulator System r Σ e F (s) u G(s) y -1 U(s) = F (s)e(s) Härifrån får vi ett samband för hur r(t) u(t). = U(s) = F (s) 1 + G(s)F (s) R(s)
18 18 Insignalstörning till Utsignal Vi kan även få ut ett uttryck som innehåller G(s) 1 + G(s)F (s) Detta berör en insignalsstörning ( l(t) y(t) ), som vi kommer se senare i kursen. F (s) Σ G(s) l
19 Slutna Systemets Poler Observera att alla dessa uttryck innehåller 1 + G(s)F (s), dvs. 1 + kretsförstärkningen i nämnaren, }{{} G(s)F (s) = Slutna systemets poler ges av 1 + G(s)F (s) = 0. Bestämmer stabilitet för det återkopplade systemet!
20 20 Nästa gång PID-Reglering Läxa : Repetera Laplace och differentialekvationer!
Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)
TSIU61: Reglerteknik. Poler och nollställen Stabilitet Blockschema. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 3 Poler och nollställen Stabilitet Blockschema Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 3 Gustaf Hendeby HT1 2017 1 / 26 Innehåll föreläsning 3 ˆ Sammanfattning
Reglerteknik I: F2. Överföringsfunktionen, poler och stabilitet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F2 Överföringsfunktionen, poler och stabilitet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 16 Linjära systemmodeller Linjära tidsinvarianta modeller är användbara
Reglerteknik I: F3. Tidssvar, återkoppling och PID-regulatorn. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F3 Tidssvar, återkoppling och PID-regulatorn Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 12 Poler och tidssvar Stegsvar u(t) G y(t) Modell Y (s) = G(s)U(s) med överföringsfunktion
TSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2,
Differentialekvationer Övningar i Reglerteknik Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys.. Lös följande begynnelsevärdesproblem dy dt y =, t > 0 y(0)
TSIU61: Reglerteknik. Matematiska modeller Laplacetransformen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 2 Matematiska modeller Laplacetransformen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 2 Gustaf Hendeby HT1 2017 1 / 21 Innehåll föreläsning 2 ˆ Sammanfattning
Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula
Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system
TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.
TSIU6 Föreläsning 4 Gustaf Hendeby HT 207 / 22 Innehåll föreläsning 4 TSIU6: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se ˆ Sammanfattning av föreläsning
TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 4 Gustaf Hendeby HT1 2017 1 / 22 Innehåll föreläsning 4 ˆ Sammanfattning av föreläsning
Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik
Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är
Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 9 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 30 september 2013 Tillståndsåterkoppling Antag att vi återkopplar ett system med hjälp av u
Lösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning.
Föreläsning 4 Stabilitet (2.5) Från tidigare: Systemets poler (rötterna till kar. ekv.) påverkar egenskaperna hos diffekvationens lösning. Definition av insignal-utsignalstabilitet: OH-bild Sats 2.1: OH-bild
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Övningar i Reglerteknik
Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler
Välkomna till TSRT15 Reglerteknik Föreläsning 2
Välkomna till TSRT15 Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering
A
Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
TENTAMEN I TSRT22 REGLERTEKNIK
SAL: TENTAMEN I TSRT22 REGLERTEKNIK TID: 27--23 kl. 8:-3: KURS: TSRT22 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Svante Gunnarsson, tel. 3-28747,7-3994847 BESÖKER SALEN:
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Välkomna till Reglerteknik Föreläsning 2
Välkomna till Reglerteknik Föreläsning 2 Sammanfattning av föreläsning 1 Lösningar till differentialekvationer Karakteristiska ekvationen Laplacetransformer Överföringsfunktioner Poler Stegsvarsspecifikationer
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars
Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 8 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 27 september 2013 Introduktion Förra gången: Tillståndsmodell: ẋ(t) = Ax(t) + Bu(t), x(0) =
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 17 mars 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0
Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen
Reglerteknik, TSIU61. Föreläsning 2: Laplacetransformen
Reglerteknik, TSIU61 Föreläsning 2: Laplacetransformen Reglerteknik, ISY, Linköpings Universitet Innehåll 2(13) 1. Sammanfattning av föreläsning 1 2. Hur löser man differentialekvationer på ett arbetsbesparande
Laplacetransform, poler och nollställen
Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Lördag 29 augusti 205, kl. 9.00-2.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: Kursboken(Glad-Ljung),
REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120
REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 2018, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 208, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans
TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.
Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet
TENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 12 Sammanfattning av kursen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 12 Gustaf Hendeby HT1 2017 1 / 56 Innehåll föreläsning 12: 1. Reglerproblemet 2. Modellbygge
TSRT91 Reglerteknik: Föreläsning 9
TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 2017, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 207, kl. 4.00-7.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans
INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4
SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK SAL: T,T2 KÅRA TID: januari 27, klockan 8-3 KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 9.3,.3 KURSADMINISTRATÖR:
Nyquistkriteriet, kretsformning
Sammanfattning från föreläsning 5 2 Reglerteknik I: Föreläsning 6 Nyquistkriteriet, kretsformning Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Reglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl
Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:
TSIU61: Reglerteknik. Sammanfattning av föreläsning 8 (2/2) Andra reglerstrukturer. ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från störsignalen
TSIU61 Föreläsning 9 HT1 2016 1 / 26 Innehåll föreläsning 9 TSIU61: Reglerteknik Föreläsning 9 Andra reglerstrukturer hendeby@isy.liu.se ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från referenssignalen
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,
TENTAMEN Reglerteknik I 5hp
TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Formalia. Reglerteknik, TSRT12. Föreläsning 1. Första föreläsningen. Vad är reglerteknik?
Formalia Reglerteknik, TSRT12 Föreläsning 1 Hemsida. http://www.control.isy.liu.se/student/tsrt12/ Föreläsnings-oh läggs ut ca en dag i förväg. Lablistor på första lektionen. Läroboken tillåten på tentan
TENTAMEN: DEL A Reglerteknik I 5hp
TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 7 december 205, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: ursboken(glad-ljung), miniräknare,
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
Reglerteori. Föreläsning 12. Torkel Glad
Reglerteori. Föreläsning 12 Torkel Glad Föreläsning 12 Torkel Glad Mars 218 2 Innehåll Styrning av instabila system, forts. Konsekvenser av begränsad insignal Hur bra kan S bli? Problem med nollställen
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: Ter2 TID:4 mars 207, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 0730-9699 BESÖKER SALEN:
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 214-1-24 Sal (1) TER1,TER2,TERE (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in