Lösningar Reglerteknik AK Tentamen

Storlek: px
Starta visningen från sidan:

Download "Lösningar Reglerteknik AK Tentamen"

Transkript

1 Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen till pumpen (ii utsignal y sockerhalt i blodet (iii referenssignal r normal sockerhalt i blodet (iv störsignal v sockerintag via mat Uppgift c Kontrollera först om systemet är stabilt ( annars existerar inte gränsvärdet. Egenvärdena ges av s + 3s + 3 dvs systemet är stabilt eftersom koecienterna är positiva. Stationär punkt: ẋ(t 0 x x, x 0.5r, y x y 0.5r e r y 0.5r.5, Svar: Det stationära felet är.5. Observera att man måste analysera stabilititet för att få helt rätt på uppgiften. Uppgift d Svar: Stegsvar A motsvarar P-regulatorn F (s eftersom stegsvaret är mer odämpat än i Figur B. Det har ett stationärt fel så det kan inte PI-regulatorn F 3 (s Stegsvar B motsvarar PD-regulatorn F (s eftersom stegsvaret är mer dämpat än i Figur A. Stegsvar C motsvarar PI-regulatorn F 3 (s eftersom det är enda stegsvaret utan stationärt fel.

2 Uppgift a-i Systemet är skrivet på formen ẋ f (x, u och ẋ f (x, u där f (x, u sin(x och f (x, u x + u, linjäriseringen ges av ẋ df dx (x0, u 0 x + df du (x0, u 0 u Ax + Bu där [x 0, u 0 ] T [0, π, π] T är linjäriseringspunkten: ( A df df df dx dx dx df dx df dx ( 0 cos(x 0 ( 0 0 och Svar: ẋ t B df du ( df du df du [ ] 0 x(t + 0 ( 0 [ ] 0 u(t med x(t [x (t, x (t π] T och u(t u(t + π Uppgift a-ii Systemet är styrbart eftersom S ( B AB ( 0 är full rang. 3, 4. Vi får Vi beräknar L [l l ] så att egenvärdena hos matrisen A BL hamnar i A BL ( 0 0 ( ( 0 (l 0 l l l 0 det(λi (A BL λ l λ + l λ(λ + l l λ + (l λ l 0 Vi vill ha poler i 3, 4 så vi vill ha det karakteristiska polynomet 0 (λ + 3(λ + 4 λ + 7λ + så vi identierar l och l 7 l 8. Svar: u(t [ 8] x(t

3 Uppgift b-i Systemet är observerbat eftersom O är full rang. Det skattade systemet ges av ( C CA ( 0 0 ˆx Aˆx + Bu + K(y ŷ Aˆx + Bu + K(x ˆx (A KCˆx + Bu Polerna till observatören ges av egenvärdena till A KC med K (k, k T fås ( ( ( 0 k ( k A KC k 0 k Polerna fås sedan ur 0 det(λi (A KC λ + k k λ (λ + k λ + k λ + k λ + k 0 Vi vill ha dubbelpol i α så vi vill ha det karakteristiska polynomet 0 (λ + α λ + αλ + α så vi identierar k α och k α. Svar: ˆx Aˆx + Bu + K(y ŷ med K [α α ] T Uppgift b-ii Överföringsfunktionen från störsignal till skattningsfelet ỹ C x + v för blir (boken sidan 99, formel 9.3 G v ỹ (s C(sI (A KC K där K bestämdes i Uppgift b-i. Insättning ger k s + k s + k s + k Uppgift 3a G v ỹ (s ( 0 ( ( s 0 0 s ( k k 0 αs + α s + αs + α (s + α αs α s (s + α ( k k s (s + α Svar: T är en tidskonstant relaterad till dynamik, t.ex. orsakad av tröghet. T är en ren tidsfördröjning, orsakad av t.ex. masstransport. 3

4 Uppgift 3b Vi följer lead-lag algoritmen stegvis. Vi kan antingen använda Bode-diagramet vi har fått uppritat, eller så kan vi räkna med hjälp av uttrycket för G(s.. Nuvarande skärfrekvens: Numeriskt har vi ω c K G(iω c + T (iω c K ω c. T K + T ω c. Önskad skärfrekvens: ω cd ω c Nuvarande fasmarginal: φ m arg G(iω c ( 80 K arg e T iω c T iω c arg K arg( + T ω c i + arg e T ω ci + 80 Numeriskt har vi att φ m arctan ( T ω c T ω c arctan(t ω c T ω c. 4. Hur mycket måste vi fasöka vid ω cd för att ha samma fasmarginal som innan? (Kom ihåg att ta hänsyn till lag-länken som kommer sänka fasen med 5.7 enligt tumregel. φ m [ arg G(iω cd φ ] ( φ arctan ( T ω cd T ω cd φ φ m arctan ( T ω cd + T ω cd Numeriskt har vi att φ Bestäm β så att vi får denna fasökning av lead-länken enligt Figur 5.3 i boken, eller formel (5.4: β sin φ + sin φ Välj τ D så att den maximala fasavanceringen sker vid vår önskade skärfrekvens: τ D ω cd β

5 7. Välj förstärkningen K så att vi får önskad skärfrekvens i systemet. Använd att vi valt τ D ω cd β ω cd τ D β, samt formel (5.6 i boken: Flead (iω cd G(iω cd Flead (i G(iωcd (5.6 K K, τ D β β + T ωcd som ger att K β Numeriskt ger detta att K T ω cd K. 8. Välj τ I enligt tumregel: τ I 0 ω cd Bestäm γ så att vi får tillräckligt litet stationärt (stegfel. Vi vill ha att e enligt specikationerna. Använd formel (3.5, samt (5.: 0.05 e 0 (3.5 + G 0 (0 (5. + K +T e T 0 0 K γ Löser vi ut γ ur olikheten får vi att γ + G(s K τ Ds+ + k K γ k K τ I s+ βτ D s+ τ I s+γ + G(0 K s0 γ Svar: Vår regulator blir alltså F (s s s + 73.s + 73.s , vilket ger en skärfrekvens på ca och en fasmarginal på 03.3 i det kompenserade systemet (notera att lag-länken yttat skärfrekvensen något. Notera också att fasmarginalen är ovanligt stor för en praktisk tillämpning. Uppgift 3c Lag-länken sänker fasen med arg F lag (iω arctan ( γτ Iω γ + τ I ω 5

6 vid frekvensen ω, se formel (5.0 i boken. För att få ett stabilt återkopplat system måste vi ha positiv fasmarginal φ m, alltså kan vi som mest sänka fasen med φ m vid den nya skärfrekvensen ω cd : φ m arctan ( γτ Iω cd γ + τi ω cd (γ + τi ωcd tan(φ m ( γτ I ω cd τ I ω cd tan(φ m + γ tan(φ m ( γτ I ω cd 0 τ I ( γω cd ω cd tan(φ m τ I + γ tan(φ m ω cd tan(φ m 0 τ I ( γ ω cd tan(φ m τ I + γ ω cd Löser vi denna andra-grads ekvation med de givna numeriska värderna (och γ får vi de två lösningarna 0 τ I, 5.4, τ I, Om vi sänker från vårt ursprungliga värde på τ I kommer τ I, stötas på först. Svar: Vi kan sänka τ I till ca 55 innan vi stöter på problem med instabilitet. Uppgift 4a Från den givna Nyquistkurvan erhålls ω c 0.5 rad/s; ω p 0.58 rad/s; ϕ m arctan( ; A m Den efterfrågade skärfrekvensen ges av Från Nyquistkurvan erhålls ω c,d (0.5.0rad/s G(i P-regulatorn skalar hela Nyquistkurvan med K P, så för att ytta skärfrekvensen till ω c,d krävs att K P G(i.0 K P

7 Observera att K P G(iω p vilket innebär att Nyquistkurvan nu benner sig till vänster om, så att systemet blir instabilt. Svar: F (s 4.8 Uppgift 4b Den efterfrågade skärfrekvensen ges fortfarande av ω c,d.0rad/s Hur påverkar F (s K D s Nyquistkurvan? Belopp: F (iωg(iω K D iω G(iω K D ω G(iω Beloppet skalas alltså med K D ω. Argument: arg (F (iωg(iω arg (K D iω G(iω arg K D + arg iω + arg G(iω 0 + π + arg G(iω Nyquistkurvan vrids alltså 90 moturs. Bestäm först det K D som krävs för att uppnå den efterfrågade skärfrekvensen K D ω c,d G(iω c,d K D K D Efter rotationen skär Nyquistkurvan inte längre negativa Re-axeln, och således kan slutna systemet vara stabilt. Frekvensvaret vid ω c,d vrids 90 moturs och skalas med K D ω c,d, så specikt gäller att G(iω c,d i0. yttas till G 0 (iω c,d F (iω c,d G(iω c,d 4.7( 0. i i Den nya fasmarginalen ges således av ϕ m arctan (

8 Problemet är dock att vi har förkortat en pol i s 0! Detta resulterat i instabilitet eftersom G ly (s G(s + G(sF (s kommmer att ha en pol i s 0 från G(s. Observera att G(0F (0 är ändlig. Svar: F (s 4.7s, men systemet blir instablit pga förkortning av pol i s 0. Uppgift 4c eftersom K P K D ω c,d F (iω c,d α K P + ( α K Dω c,d K Dω c,d (båda regulatorna ger sammma skärfrekvens. Följaktligen så är F (iω c,d oberoende av α och har samma förstärking vid ω c,d som D-regulatorn och P- regulatorn. Det som skiljer är fasen, som är arg F (iω c,d arctan( α /α Svar: För α / får man 45 o i fasavancering från regulatorn och fasmarginalen blir därför 9.5 o, dvs stabilt (och ingen förkortning av pol i s 0. Uppgift 5a Från blockdiagramet fås att: S(s + G(sF (s P G (sp F (s P G (sp F (s + Q G (sq F (s, G(s Q G(s P G (s, F (s Q F (s P F (s Notera att S(s har samma instabila nollställen som G(s eftersom regulatorn F (s bara har stabila nollställen (antagande och P G (sp F (s + Q G (sq F (s har alla rötter i vänster halvplan (stabilt. Endast stabila nollställen kan förkortas. Uppgift 5b Enligt ovan så har S(s ett nollställe i höger halvplan, nämligen p 4. Detta ger: S(s S(s s + p 4 s p 4 s p 4 s + p 4 S mf (s s p 4 s + p 4 S ap (s s p 4 s + p 4 8

9 Uppgift 5b Eftersom z är ett instabilt nollställe till G(s, så är F (z ändlig och därmed S(z + F (z 0 har vi med hjälp av vårt tidigare uträknade uttryck att: Detta ger oss villkoret: Uppgift 5c S mf (z z p 4 z + p 4 S mf (z z + p 4 z p 4 log S mf (z π z log G(iω z + ω dω ln z + p 4 ( z p 4 Om massan M är stor relativt till massan m och l 0 är liten relativt längden l så blir z p 4 och π z log G(iω z + ω dω blir stort oberoende av hur man reglerar systemet! Detta innebär att störningar förstärks mycket, och speciellt mycket för frekvenser ω < z, eftersom z z + ω /z för ω mindre än z. Föra höga frekvensker får man approximativt viktning z /ω. Ett nollställe i höger halvplan medför förstärkning av störningar vid frekvenser som ligger till vänster om nollstället i Bodediagramet. Att ha ett l 0 < l gör alltså att systemet blir mycket mer känsligt för störningar och mycket mer svårreglerat! 9

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar

Läs mer

Reglerteknik AK Tentamen

Reglerteknik AK Tentamen Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor

Läs mer

ERE103 Reglerteknik D Tentamen

ERE103 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13

Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s) Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)

Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12) Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet

Läs mer

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A, Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

Lösningar Reglerteknik AK Tentamen

Lösningar Reglerteknik AK Tentamen Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl

Läs mer

Lead-lag-reglering. Fundera på till den här föreläsningen. Fasavancerande (lead-) länk. Ex. P-regulator. Vi vill ha en regulator som uppfyller:

Lead-lag-reglering. Fundera på till den här föreläsningen. Fasavancerande (lead-) länk. Ex. P-regulator. Vi vill ha en regulator som uppfyller: TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby Sammanfattning av föreläsning 6 Regulatorsyntes

Läs mer

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

TSIU61: Reglerteknik. Lead-lag-regulatorn. Gustaf Hendeby.

TSIU61: Reglerteknik. Lead-lag-regulatorn. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 ˆ Sammanfattning av

Läs mer

Reglerteknik AK, FRT010

Reglerteknik AK, FRT010 Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13

Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.

Läs mer

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 9. Reglerteknik AK. c Bo Wahlberg. 30 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 9 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 30 september 2013 Tillståndsåterkoppling Antag att vi återkopplar ett system med hjälp av u

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts. Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:

Läs mer

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25

Läs mer

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan

Läs mer

Specifikationer i frekvensplanet ( )

Specifikationer i frekvensplanet ( ) Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 7

Välkomna till TSRT19 Reglerteknik Föreläsning 7 Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)

Läs mer

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19 TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)

Läs mer

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort

Läs mer

Sammanfattning TSRT mars 2017

Sammanfattning TSRT mars 2017 Sammanfattning TSRT2 3 mars 207 Innehåll Överföringsfunktion 4 2 Stegsvar, :a och 2:a ordningens system 4 2. Första ordningens system...................... 4 2.2 2:a ordningens system, poler.....................

Läs mer

Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik

Föreläsning 7. Reglerteknik AK. c Bo Wahlberg. 26 september Avdelningen för Reglerteknik Skolan för elektro- och systemteknik Föreläsning 7 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik Skolan för elektro- och systemteknik 26 september 2013 Introduktion Förra gången: Känslighet och robusthet Dagens program: Repetion

Läs mer

Reglerteknik AK. Tentamen kl

Reglerteknik AK. Tentamen kl Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

TSIU61: Reglerteknik. Regulatorsyntes mha bodediagram (1/4) Känslighet Robusthet. Sammanfattning av föreläsning 7

TSIU61: Reglerteknik. Regulatorsyntes mha bodediagram (1/4) Känslighet Robusthet. Sammanfattning av föreläsning 7 TSIU6 Föreläsning 8 Gustaf Hendeby HT 207 / 8 Innehåll föreläsning 8 TSIU6: Reglerteknik Föreläsning 8 Känslighet Robusthet Gustaf Hendeby ˆ Sammanfattning av föreläsning 7 ˆ Känslighet mot störningar

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)

Läs mer

TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.

TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 12 Sammanfattning av kursen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 12 Gustaf Hendeby HT1 2017 1 / 56 Innehåll föreläsning 12: 1. Reglerproblemet 2. Modellbygge

Läs mer

Föreläsning 1 Reglerteknik AK

Föreläsning 1 Reglerteknik AK Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en

Läs mer

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06) Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0

För ett andra ordningens system utan nollställen, där överföringsfunktionen är. ω 2 0 s 2 + 2ζω 0 s + ω0 Övning 5 Introduktion Varmt välkomna till femte övningen i glerteknik AK! Håkan Terelius hakante@kth.se petition lativ dämpning För ett andra ordningens system utan nollställen, där överföringsfunktionen

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,

Läs mer

TENTAMEN Reglerteknik 3p, X3

TENTAMEN Reglerteknik 3p, X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 2. Reglerteknik AK. c Bo Wahlberg. 3 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 2 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 3 september 2013 Introduktion Förra gången: Dynamiska system = Differentialekvationer Återkoppling

Läs mer

Överföringsfunktion 21

Överföringsfunktion 21 Vad är reglerteknik? 8 Analys och styrning av dynamiska system Välj styrsignalen (u(t)) så att systemet (mätsignalen y(t)) uppför sig som önskat (referenssignalen r(t)) trots störningar (v(t)) Vi betraktar

Läs mer

TENTAMEN Reglerteknik I 5hp

TENTAMEN Reglerteknik I 5hp OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller Reglerteknik I 5hp för F4/IT4/STS3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

Reglerteknik I: F10. Tillståndsåterkoppling med observatörer. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F10. Tillståndsåterkoppling med observatörer. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F10 Tillståndsåterkoppling med observatörer Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 2 / 14 F9: Frågestund F9: Frågestund 1) När ett system är observerbart då

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar

Läs mer

Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig

Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna

Läs mer

Kretsformning och känslighet

Kretsformning och känslighet Innehåll föreläsning 7 2 Reglerteknik, föreläsning 7 Kretsformning och känslighet Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY) 1. Sammanfattning

Läs mer

TENTAMEN Reglerteknik I 5hp

TENTAMEN Reglerteknik I 5hp TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och

Läs mer

ÖVNINGSTENTAMEN Reglerteknik I 5hp

ÖVNINGSTENTAMEN Reglerteknik I 5hp ÖVNINGSTENTAMEN Reglerteknik I 5hp Tid: När det passar dig Plats: Där det passar dig Ansvarig lärare: Någon bra person. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell och matematisk

Läs mer

TSIU61: Reglerteknik. Reglerproblemet. Innehåll föreläsning 12: 1. Reglerproblemet: Ex design av farthållare. Sammanfattning av kursen

TSIU61: Reglerteknik. Reglerproblemet. Innehåll föreläsning 12: 1. Reglerproblemet: Ex design av farthållare. Sammanfattning av kursen TSIU6: Reglerteknik Föreläsning 2 Sammanfattning av kursen gustaf.hendeby@liu.se TSIU6 Föreläsning 2 / 56 Innehåll föreläsning 2:. Reglerproblemet 2. Modellbygge ˆ Fysikalisk modell ˆ Identifiering (t

Läs mer

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till! TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,

Läs mer

TENTAMEN Reglerteknik 4.5hp X3

TENTAMEN Reglerteknik 4.5hp X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp för X3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 8

Välkomna till TSRT19 Reglerteknik M Föreläsning 8 Välkomna till TSRT19 Reglerteknik M Föreläsning 8 Sammanfattning av föreläsning 7 Kretsformning Lead-lag design Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet) Sammanfattning av förra

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:

Läs mer

Övning 3. Introduktion. Repetition

Övning 3. Introduktion. Repetition Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,

Läs mer

TSRT91 Reglerteknik: Föreläsning 9

TSRT91 Reglerteknik: Föreläsning 9 TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

A

A Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du

Läs mer

Formelsamling i Reglerteknik

Formelsamling i Reglerteknik Formelsamling i Reglerteknik Laplacetransformation Antag att f : IR IR är en styckvis kontinuerlig funktion. Laplacetransformen av f definieras av Slutvärdesteoremet F(s) = L(f)(s) = 0 e st f(t)dt lim

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig

Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TENTAMEN Reglerteknik I 5hp

TENTAMEN Reglerteknik I 5hp Denna tentamen gäller Reglerteknik I 5hp ör F3. På sista sidan av tentamen inns ett örsättsblad, som ska yllas i och lämnas in tillsammans med dina lösningar. TENTAMEN Reglerteknik I 5hp Tid: Lördag 19

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning

Läs mer

TSIU61: Reglerteknik. Sammanfattning av föreläsning 8 (2/2) Andra reglerstrukturer. ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från störsignalen

TSIU61: Reglerteknik. Sammanfattning av föreläsning 8 (2/2) Andra reglerstrukturer. ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från störsignalen TSIU61 Föreläsning 9 HT1 2016 1 / 26 Innehåll föreläsning 9 TSIU61: Reglerteknik Föreläsning 9 Andra reglerstrukturer hendeby@isy.liu.se ˆ Sammanfattning av föreläsning 8 ˆ Framkoppling från referenssignalen

Läs mer

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4

INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4 SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,

Läs mer

Reglerteori. Föreläsning 12. Torkel Glad

Reglerteori. Föreläsning 12. Torkel Glad Reglerteori. Föreläsning 12 Torkel Glad Föreläsning 12 Torkel Glad Mars 218 2 Innehåll Styrning av instabila system, forts. Konsekvenser av begränsad insignal Hur bra kan S bli? Problem med nollställen

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29--7 kl. 8: 3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120 REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,

Läs mer

Lösningar till tentamen i Reglerteknik

Lösningar till tentamen i Reglerteknik Löningar till tentamen i Reglerteknik Tentamendatum: 8 Juni 205. (a) Välj t.ex. tyrbar kanonik form 5 4 3 ẋ(t) = 0 0 x(t) + 0 u(t) 0 0 0 y(t) = ( 0 ) x(t) (b) Stabilt ytem och tationär förtärkning G(0)

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE Reglerteknik D Tentamen 5--3 8.3.3 M Examinator: Bo Egardt, tel 37. Tillåtna hjälpmedel: Typgodkänd

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial

Läs mer

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.

Läs mer

TENTAMEN Reglerteknik 4.5hp X3

TENTAMEN Reglerteknik 4.5hp X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans

Läs mer

Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 8. Reglerteknik AK. c Bo Wahlberg. 27 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 8 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 27 september 2013 Introduktion Förra gången: Tillståndsmodell: ẋ(t) = Ax(t) + Bu(t), x(0) =

Läs mer

En allmän linjär återkoppling (Varför inför vi T (s)?)

En allmän linjär återkoppling (Varför inför vi T (s)?) TSRT9 Reglerteknik Föreläsning 3 Inger Erlander Klein REGLERTEKNIK Avdelningen för Reglerteknik Institutionen för systemteknik inger.erlander.klein@liu.se Tel: 28665 Kontor: B-huset ingång 23-25 www.control.isy.liu.se/student/tsrt9/vt/

Läs mer