Reglerteknik AK, FRTF05

Storlek: px
Starta visningen från sidan:

Download "Reglerteknik AK, FRTF05"

Transkript

1 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25 poäng. Poängberäkningen finns markerad vid varje uppgift. Betyg 3: lägst 2 poäng 4: lägst 7 poäng 5: lägst 22 poäng Tillåtna hjälpmedel Matematiska tabeller (TEFYMA eller motsvarande), formelsamling i reglerteknik samt icke förprogrammerade räknare. Tentamensresultat Resultatet meddelas via LADOK :55

2 . Ett linjärt tidsinvariant system beskrivs av differentialekvationen... y 2 u + 4ÿ + y = u. a. Bestäm systemets överföringsfunktion. ( p) b. Av vilken ordning är systemet? (0.5 p) c. Är systemet asymptotiskt stabilt? (0.5 p) a. Laplacetransformera differentialekvationen: s 3 Y (s) 2sU(s) + 4s 2 Y (s) + Y (s) = U(s) Y (s) = där överföringsfunktionen identifieras som G(s) = 2s + s 3 + 4s 2 + 2s + s 3 + 4s 2 + U(s), b. Det karaktäristiska polynomet, och således systemet, är av ordning 3. c. Nej. Stabilitetsvillkoren (se t.ex formelsamlingen) ger att systemet inte är asymptotiskt stabilt. 2. Figur visar blockschemat för en reglerkrets. r e y Σ G r (s) Σ v s Figur : Blockschema för uppgift 2 a. Beräkna överföringsfuntionen från R(s) till E(s) och från V (s) till E(s). ( p) b. Låt r(t) = 0 och v(t) vara en stegfunktion med höjden. Beräkna felet stationärt för en P regulator. Beräkningar krävs för full poäng. ( p) c. Låt r(t) vara en stegfunktion med höjden och v(t) = 0. Beräkna felet stationärt för en P regulator. Beräkningar krävs för full poäng. ( p) d. Låt r(t) = 0 och v(t) vara en stegfunktion med höjden. Beräkna felet stationärt för en PI regulator. ( p) :55 2

3 a. Från diagramet fås Lös ut E(s) E(s) = R(s) Y (s) = R(s) (G P (s)v (s) + G P (s)g R (s)e(s)) b. c. E(s) = + G P (s)g R (s) }{{} G RE R(s) e( ) = lim s 0 se(s) = lim s 0 sg LE (s)v (s) = lim s 0 G p V (s) + G P (s)g R (s) }{{} G LE s + s k = lim s 0 s + k = k e( ) = lim se(s) = lim sg RE (s)r(s) = lim s 0 s 0 s 0 + s k = lim s s 0 s + k = 0 d. Nu har vi G R (s) = K ( + ) = KsT i + K st i st i e( ) = lim s 0 s s + KsT i+k s 2 T i s = lim s 0 s 2 + KsT i + K = 0 3. Ett system beskrivs av följande olinjära differentialekvation ẍ + ẋ cos(x) + x = 4u. a. Inför tillstånden x = x och x 2 = ẋ och skriv systemet på tillståndsform. ( p) b. Bestäm alla stationära punkter. ( p) c. Linjärisera systemet runt punkten där u = 5. (2 p) In the state-space form. The system is ẋ = x 2 ẋ 2 = x 2 cos(x ) x + 4u y = x (= f (x, u)) (= f 2 (x, u)) (= g(x, u)) () a. From the first equation in () we have x 0 2 = 0. Substitutin x 2 = 0 in the other equation and equating it to zero we have, 0 = x + 4u. (2) Therefore the stationary points are (x 0, x0 2, u0 ) = (t, 0, t/4). We also have y 0 = x :55 3

4 b. u = 5 give the stationary points (x 0, x0 2, u0, y 0 ) = (60, 0, 5, 60). The partial derivatives are f f f = 0, =, x x 2 u = 0, f 2 x = x 2 sin(x ), Putting in new variables g x =, f 2 x 2 = cos(x ), g x 2 = 0, g u = 0, f 2 u = 4 Therefore the linearized system is x = x x 0 u = u u 0 y = y y 0. [ ] [ ] x 0 0 = x + u 2 4 y = [ 0 ] x (3) (4) 4. a. Förklara begreppet integratoruppvridning (wind up) kortfattat och beskriv ett sätt att undvika det. ( p) b. För ett styrbart system kan polerna teoretiskt placeras godtyckligt långt bort från origo. Ge en anledning till varför detta inte går i praktiken. ( p) a. Se sidan 2 i föresläsningsanteckningarna. b. Omodellerad dynamik och mätbrus är exampel på anledningar som gör att polerna inte kan placeras godtyckligt. 5. Ett system på tillståndsform ges av [ ] ẋ ẋ 2 [ ] [ ] [ ] 0 x 0 = + u 0 x 2 ] y = [ 0 ] a. Är systemet styrbart? ( p) b. Bestäm en regulator u = l r r Lx så att det slutna systemet får statiska förstärkningen och det karaktäristiska polynomet [ x x 2 s 2 + 2ζωs + ω 2 för givna ζ och ω. (.5 p) :55 4

5 Step Response Step Response Amplitude Amplitude Time (seconds) Time (seconds) (a) (b) Figur 2: Stegsvar i uppgift 5 c. För ω = 0.5, ζ = 0.3 och ω =.5, ζ = 0.9 ges stegsvaren i figur 2. Para ihop de två parametervalen med rätt figur. Motivering krävs! (0.5 p) a. The controllability matrix is W c = [ B AB ] = Rank of W c is 2, so it is controllable. b. The coefficients of and [ ] 0 0 det(si (A BL)) = s 2 + l 2 s + l s 2 + 2ζωs + ω 2 are the same, so l = ω 2 + and l 2 = 2ζω. The static gain is which gives l r = l = ω 2. G(0) = C( (A BL)) Bl r = l r l =, c. Because Figure 2a has longer rising time and larger overshoot, it corresponds to ω = 0.5, ζ = 0.3. Figure 2b corresponds to ω =.5, ζ = Antag att vi vill styra en process där man kan mäta två utsignaler, y (t) och y 2 (t), samt att vi kan mäta en störning d. Ett möjligt sätt att strukturera regulatorerna skulle kunna vara som i figur 3. a. Vilka regulatorstrukturer (förutom återkoppling) finns i representerade i figuren? ( p) :55 5

6 b. Det första processteget är instabilt och kan beskrivas med P (s) = s 0.5 (s 2) 2. Kan man stabilisera den inre loopen med en P-regulator? Om så är fallet, för vilka förstärkningar är den inre loopen asymptotiskt stabil? (2 p) c. Hur skall F(s) väljas för att helt eliminera inverkan av störningen d? Kommentera huruvida detta är ett sunt val av F. ( p) s s s P s 2 P s 2 Figur 3: Regulatorstruktur tillhörande uppgift 6. a. Framkoppling, F, samt kaskadreglering. b. Överföringsfunktionen från x till y ges av G y x = C (s)p (s) + C (s)p (s) = K(s 0.5) s 2 + (K 4)s K. (5) Ett andra ordningens system är asymptotiskt stabil om alla koefficient i det karakteristiska polynomet är positiva dvs. K 4 > K > 0. (6) Ur dessa ekvationer ser vi att 4 < K < 8 stabiliserar den inre loopen. c. Om störningen helt skall elimineras måste bidraget från d helt undertryckas i signalen y, dvs + P (s)f(s) = 0 (7) ur vilken vi kan lösa ut F(s) = 2)2 = (s P (s) s 0.5. (8) Denna regulator är instabil och ickeproper, dvs gradtalet i täljaren är större än gradtalet i nämnaren. Den går således inte att realisera :55 6

7 7. En andra ordningens stabil process vars Nyquistdiagram visas i Figur 4 ska regleras med en proportionell regulator G r (s) = K. a. För vilka positiva värden på K blir det återkopplade systemet asymptotiskt stabilt? ( p) b. Om det uppstår en tidsfördröjning på en halv sekund i processen, hur stor eller liten måste skärfrekvensen vara för att det återkopplade systemet ska vara stabilt? (2 p) a. Nyquistkurvan skär aldrig negativa reella axeln. Därför kommer det återkopplade systemet att vara stabilt för alla positiva värden på K. b. Dödtidsmarginalen för systemet är L m = ϕ m ω c. För att det återkopplade systemet ska vara stabilt måste alltså L < L m = ϕ m ω c ω c < ϕ m L, 3 Nyquist Diagram 2 Imaginary Axis Real Axis Figur 4: Nyquistdiagrammet för Uppgift :55 7

8 där L = 0.5 är tidsfördröjningen. Fasmarginalen avläses ur Nyquistdiagrammet och är ϕ m 35 = 35 π rad 0.6 rad. 80 Skärfrekvensen måste alltså uppfylla ω c < = :55 8

9 8. Vid Lunds kommunala reningsverk har en ingenjör kommit fram till att den pump som begränsar hur mycket dagvatten som pumpas in i reningsanläggningen kan beskrivas med överföringsfunktionen P(s) = 8 (s + 2) 2. Ett av problemen med den nuvarande P-regulatorn är att den dels är för långsam samt att den ger ett bestående reglerfel. För att komma åt dessa problem vill man istället använda en PI-regulator. Specifikationen på det nya reglersystemet säger att skärfrekvensen skall vara dubbelt så stor som den som erhölls vid P-reglering med K =. Vidare skall fasmarginalen vara 45. Hur skall PIregulatorns parametrar väljas för att möta specifikationen? Bodediagrammet för det öppna systemet med K = kan ses i figur 5. (3 p) Från Bodediagrammet, eller från beräkningar, ser vi att den ursprungliga skärfrekvensen är ω c = 2. Den nya skärfrekvensen skall således vara ω c = 4. PIregulatorns överföringsfunktion kan skrivas som C(s) = K( + st i) st i (9) och det öppna systemet, med PI-regulator, som G(s) = C(s)P(s). Fasmarginalen ges av ϕ m = 80 + arg G(iω c) = arctan (ω ct i ) + arg(p(iω c)) (0) Fasbidraget från processen kan utläsas direkt från Bodediagrammet eller beräknas som ( ω arg (P (iωc)) ) = 2 arctan c = () 2 0 Bode Diagram 0 0 Magnitude (abs) Phase (deg) Frequency (rad/s) Figur 5: Bodediagrammet för det öppna systemet i uppgift :55 9

10 Fasmarginalen skall vara 45 kan alltså skrivas som ur vilken vi kan lösa ut integraltiden ϕ m = 36.9 arctan (4T i ) = 45 (2) T i = tan( ) 4 =.75. (3) Då återstår bara att välja K så att ω c är den nya skärfrekvensen. Det öppna systemets förstärkning är G(iω) = C(iω) P(iω) = K + ω 2 Ti 2 ωt i 8 ω (4) Att ω c är systemets skärfrekvens innebär att ur vilken vi kan lösa ut G(iωc) 4 = K + 62Ti 2 8 4T i = (5) K = 0T i = (6) ( + 6Ti ) Förstärkning hos processen vid den nya skärfrekvensen kunde också ha läst av i Bodediagrammet :55 0

Reglerteknik AK, FRT010

Reglerteknik AK, FRT010 Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13

Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13

Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK. Tentamen kl

Reglerteknik AK. Tentamen kl Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13

Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25

Läs mer

Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13

Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13 Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

ERE103 Reglerteknik D Tentamen

ERE103 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

Reglerteknik AK Tentamen

Reglerteknik AK Tentamen Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,

Läs mer

Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig

Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering

Läs mer

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19

TENTAMEN I REGLERTEKNIK TSRT03, TSRT19 TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:

Läs mer

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial

Läs mer

Lösningar Reglerteknik AK Tentamen

Lösningar Reglerteknik AK Tentamen Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl

Läs mer

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!

TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till! TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer 1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Torsdag 15 december 2016, kl. 8.00-11.00 Plats: Fyrislundsgatan 80, sal 1 Ansvarig lärare:

Läs mer

Övningar i Reglerteknik

Övningar i Reglerteknik Övningar i Reglerteknik Stabilitet hos återkopplade system Ett system är stabilt om utsignalen alltid är begränsad om insignalen är begränsad. Linjära tidsinvarianta system är stabila precis då alla poler

Läs mer

A

A Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: G, TERD TENTAMEN I TSRT9 REGLERTEKNIK TID: 7-- kl. 8: : KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-6994 BESÖKER SALEN: cirka

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig

Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna

Läs mer

Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)

Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12) Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120

REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120 REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,

Läs mer

Reglerteknik Z / Bt/I/Kf/F

Reglerteknik Z / Bt/I/Kf/F Reglerteknik Z / Bt/I/Kf/F Kurskod: SSY 050, ERE 080, ERE 091 Tentamen 2007-05-29 Tid: 8:30-12:30, Lokal: M-huset Lärare: Knut Åkesson tel 3717, 0701-74 95 25 Tentamen omfattar 25 poäng, där betyg tre

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.

Läs mer

Tentamen i Systemteknik/Processreglering

Tentamen i Systemteknik/Processreglering Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 28 maj 23 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

TENTAMEN I TSRT22 REGLERTEKNIK

TENTAMEN I TSRT22 REGLERTEKNIK SAL: TENTAMEN I TSRT22 REGLERTEKNIK TID: 27--23 kl. 8:-3: KURS: TSRT22 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Svante Gunnarsson, tel. 3-28747,7-3994847 BESÖKER SALEN:

Läs mer

TENTAMEN I REGLERTEKNIK I

TENTAMEN I REGLERTEKNIK I TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG

Läs mer

Lösningar Reglerteknik AK Tentamen

Lösningar Reglerteknik AK Tentamen Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

TENTAMEN I REGLERTEKNIK

TENTAMEN I REGLERTEKNIK TENTAMEN I REGLERTEKNIK SAL: T,T2 KÅRA TID: januari 27, klockan 8-3 KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 9.3,.3 KURSADMINISTRATÖR:

Läs mer

Tentamen i Systemteknik/Processreglering

Tentamen i Systemteknik/Processreglering Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 27 maj 2 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

TENTAMEN Reglerteknik 3p, X3

TENTAMEN Reglerteknik 3p, X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 214-1-24 Sal (1) TER1,TER2,TERE (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka

Läs mer

TENTAMEN: DEL A Reglerteknik I 5hp

TENTAMEN: DEL A Reglerteknik I 5hp TENTAMEN: DEL A Reglerteknik I 5hp Tid: Torsdag 7 december 205, kl. 8.00-.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Tillåtna hjälpmedel: ursboken(glad-ljung), miniräknare,

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del B

1RT490 Reglerteknik I 5hp Tentamen: Del B RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl

Läs mer

TENTAMEN I TSRT91 REGLERTEKNIK

TENTAMEN I TSRT91 REGLERTEKNIK SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29--7 kl. 8: 3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:

Läs mer

ÖVNINGSTENTAMEN Reglerteknik I 5hp

ÖVNINGSTENTAMEN Reglerteknik I 5hp ÖVNINGSTENTAMEN Reglerteknik I 5hp Tid: När det passar dig Plats: Där det passar dig Ansvarig lärare: Någon bra person. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell och matematisk

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 25-6-5 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s) Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen

Läs mer

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A, Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens

Läs mer

Lösningsförslag TSRT09 Reglerteori

Lösningsförslag TSRT09 Reglerteori Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)

Läs mer

TENTAMEN Reglerteknik I 5hp

TENTAMEN Reglerteknik I 5hp OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller Reglerteknik I 5hp för F4/IT4/STS3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 2018, kl

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 2018, kl Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 22 augusti 208, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans

Läs mer

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING

övningstentamen I DYNAMISKA SYSTEM OCH REGLERING övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:

Läs mer

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)

Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06) Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in

Läs mer

TENTAMEN Reglerteknik 4.5hp X3

TENTAMEN Reglerteknik 4.5hp X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00 REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 3.00-6.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 4.30. Tillåtna hjälpmedel:

Läs mer

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 2017, kl

1RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 2017, kl Tentamenskod Klockslag för inlämning Utbildningsprogram Bordnummer RT490 Reglerteknik I 5hp Tentamen: Del A Tid: Onsdag 23 augusti 207, kl. 4.00-7.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE Reglerteknik D Tentamen 5--3 8.3.3 M Examinator: Bo Egardt, tel 37. Tillåtna hjälpmedel: Typgodkänd

Läs mer

Övning 3. Introduktion. Repetition

Övning 3. Introduktion. Repetition Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-6-7 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings universitet

Försättsblad till skriftlig tentamen vid Linköpings universitet Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken

Läs mer

Föreläsning 1 Reglerteknik AK

Föreläsning 1 Reglerteknik AK Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en

Läs mer