Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
|
|
- Rune Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan nu använda oss av att det faktum att för ett stabilt linjärt system så får vi för en sinus-signal in, en sinus-signal ut, när transienterna har dött ut. Utsignalen kommer att ha följande utseende y(t) G(iω 0 ) sin(ω 0 t arg G(iω 0 )), u(t) sin(ω 0 t), ω 0 G(iω) ω 9 ω 4 Med dessa ekvationer och ω ω 0 får vi utsignalen arg G(iω) arctan ω 3 arctan ω y(t) G(iω 0 ) sin(t arg G(iω 0 )) 0 sin(t π 4 ) (b) Vi har systemet där Sedan har vi även återkopplingen Y (s) G(s)U(s) G v (s)v (s) G(s) (s )(s 3) G v (s) s U(s) F f (s)v (s) F (s)(r(s) Y (s)) ( p) Om vi ritar ut blockschemat för detta system, blir det som i figur. ( p) F f v G v r u Σ F Σ G Σ y Figur : Blockschema för uppgift b (c) Vi har samma system som i uppgift b, fast med F (s) 3. Överföringsfunktionen från v till y blir G vy GF f G v GF och vi vill att denna överföringsfunktion skall vara noll. För att få detta väljer vi F f (s) Gv(s) G(s) och med det system som vi har bli det F f (s) G v(s) G(s) (s )(s 3) s 8 s s Denna regulator är dock svår att implementera ty den innehåller en ren derivering, som inte kan implementeras exakt. (d) System har statisk förstärkning. (låga frekvenser) och ingen resonanstopp (inga svängningar) i stegsvaret. System har statisk förstärkning och resonanstopp (svängningar i stegsvaret). System är snabbare (kortare stigtid och högre bandbredd än system ). Se figur för bild på amplitudkurvan.
2 abs(g(iw)) 0 System System 0 abs(g(iw)) (db) Frequency (rad/sec) Figur : Bodediagrammets amplitudkurva i uppgift d. (a) Enligt figuren i uppgiften har vi { X (s) s U(s) X (s) s3 (X (s) X (s) V (s)) Alltså har vi systemet ẋ Ax B u u B v v y Cx ( 0 ) x { ẋ x u x x v ẋ ( ) ( ( 0 0 x u v 0) ) Systemet är observerbart ty det O 0 och styrbart ty det C 0. Alltså är beskrivningen minimal. (b) Vi vill nu använda oss av tillståndsåterkoppling, u Lx l 0 r, och lägga polerna i s, vi antar att v 0. Önskat nämnarpolynom hos slutna systemet: Nämnarpolynomet hos tillståndsåterkopplingen: T (s) (s )(s ) s 4s 4 P (s) det(si (A B u L)) s ( l )s ( l l ) Vi vill att T (s) P (s), genom att identifiera koefficienterna väljer vi l och l 0.. Överföringsfunktionen för det slutna systemet blir nu Y (s) G c (s)r(s) C(sI (A B u L)) B u l 0 R(s) l 0 s 4s 4 R(s) Den statiska förstärkningen för G c (s) är alltså l0 4 och om vi väljer l 0 så fås den statiska förstärkningen. Den slutgiltiga återkopplingen blir alltså u(t) ( 0. ) x(t) r(t) Om vi istället hade använt systemet som är givet i uppgift b så hade vi fått u(t) ( 4. ) x(t) r(t) (c) Överföringsfunktionen från störningen v(t) till utsignalen y(t) blir G v (s) C(sI (A BL)) B v s 3 (s )
3 Detta system är stabilt, så för att räkna ut hur mycket en konstant störning förstärks i stationärt tillstånd kan vi använda oss av slutvärdesteoremet. Vi antar här att stegstörningen har amplitud c, V (s) c s. lim y(t) lim sg v(s) c t s 0 s 3c Om vi istället hade använt systemet som är givet i uppgift b så hade vi fått överföringsfunktionen och den statiska förstärkningen G v (s) C(sI (A BL)) B v s (s ) lim y(t) lim sg v(s) c t s 0 s c 3. (a) Stigtiden avläses ur figuren till T r. 3.s, önskad stigtid är.s. Vi vill alltså sänka vår stigtid med en faktor , vilket betyder att vi vill höja vår skärfrekvens med faktorn.. Vi får då ω cd 3.. ω c Överslängen vi hade på stegsvaret var acceptabel vilket betyder att vi kan behålla samma fasmarginal ϕ m 60 o. Vid ω cd har vi fasmarginalen ca 40 o, alltså måste vi höja fasen med minst 0 o. Tabellen på sid 06 i boken ger β 0.49 och vi får τ D w cd β.04. Vi bestämmer K för att få förstärkningen vid den önskade skärfrekvensen β K G(iω c,d ) F lead (iω c,d ) K 0..4 där G p (iω cd ) 0. har avlästs ur figuren. Vi har alltså en regulator F lead (s) K τ Ds βτ D s.4.04s s (4 p) (b) För att räkna ut det stationära rampfelet använder vi oss av slutvärdesteoremet på e(t). lim e(t) lim E(s)s lim s t s 0 s 0 F (s)g(s) R(s) Nu har vi r(t) t vilket ger R(s) s. Vi har också att G p A/ω för små ω. Ur bodediagrammet fås att G p för ω 0.3 vilket ger att A 0.3. Felet blir nu e lim t e(t) lim s 0 s K A s s KA.4 (c) Vi vill sänka det statiska felet med en faktor. För detta använder vi en lag-länk. Vi väljer τ I 0/ω cd 4.3. Sedan väljer vi γ så att γ <.KA 0. Den slutliga regulator som vi får är alltså e lim s 0 G p KF lead F lag s K γ A <. F (s) KF lead F lag K τ Ds τ I s τ D βs τ I s s 4.3s s 4.3s 0. ( p) (d) Det slutna systemet G: G(s) F (s)g p(s) F (s)g p (s) ( p) 3
4 För höga frekvenser är leadlaglänken F K β. G p har inga nollställen och 4 poler, så för höga frekvenser är G p C/s 4. Vi kan bestämma konstanten C ur bodediagrammet: G p (iω) C/ω 4. Ur diagrammet fås G(i0) 0 4, vilket ger C. Vi har nu att för höga frekvenser gäller så dvs B KC/β.86 och p 4 G(s) K/β C s 4 K/β C KC/β s 4 KC/β KC/β s 4 s 4 G(iω) Robusthetskriteriet: Systemet är stabilt trots modellfel om G < / Q där Q är slutna systemet. Om slutna systemets förstärkning är liten kan vi alltså tåla större modellfel. Robustheten är alltså bra! 4. (a) G 4 har en integration i det öppna systemet, därför kommer den statiska förstärkningen för det slutna systemet att vara ett - Sb, BCc, och den statiska förstärkningen för det öppna systemet kommer att vara oändlig - BOd, Nb. Räknar nu ut det slutna systemet för G, G, och G 3 G c G c G c3 s0. s0. 0 s s 0 s s s. s 6s0. s 6s0. 0 s s s 6s. KC β ω 4 pol: s. poler: s 0. ± 3.3i poler: s 4.9, s. G c har komplexa poler och har alltså en översläng och en resonanstopp - Sd, BCd. G c har en snabbare dominant pol än G c3 och därför större bandbredd. G - Sc, BCa. G 3 - Sa, BCb. G c är det enda slutna system med en pol mer än antal nollställen, alltså kommer fasen för det öppna systemet att gå mot 90 - BOc, Na. G c är oscillativ, men inte G c3 vilket betyder att G 3 har större fasmarginal. G 3 - BOb, Nd. G - BOa, Nc. (6 p) System steg bode, slutna bode, öppna nyquist G Sc BCa BOc Na G Sd BCd BOa Nc G 3 Sa BCb BOb Nd G 4 Sb BCc BOd Nb (b) Det verkliga slutna systemet blir G 0 c(s) F (s)g0 (s) F (s)g 0 (s) Systemet har sina poler i s.3s 0.s s.3s 0.s.6s 0.s 3.s s 8 s 4.04s (.3s ) (s )(0.s ) (.3s ) s 7.0 ± 7.0 s 3, s 0.9 Även det verkliga systemet är alltså stabilt. (4 p). Vi har nu systemet a G(s) G (s)g (s) (s )(s ) s a 4
5 Root Locus. 0. Imaginary Axis Real Axis Figur 3: Vi har nu också återkopplingen u K(r y), K 3. Nu vill vi rita en rotort på det slutna systemet m.a.p. a. Det slutna systemet blir G c (s) KG KG 3a s 3 6s s as 6as 8a (a) Om vi nu tittar på det slutna systemet kan vi identifiera Startpunkter: 0,-,- Ändpunkter: -,-4 Asymptoter: 3, riktning π. P (s) s 3 6s s, Q(s) s 6s 8 Del av reella axeln som är med: (, ], [ 4, ], [, 0] Skärning med imaginära axeln: s iω Im: ω 3 ( 6a)ω 0 ω 0 or ω 6a Re: ω (6 a) 8a 0 Skärningspunkter: ω 0 för a 0. iω 3 (6 a)ω ( 6a)iω 8a 0 ω 0 a 0 ω 6a (6 a)( 6a) 8a a 4 ± 4 4 < 0 Rotorten blir som i figur 3. Systemet kommer att vara stabilt för alla a > 0, ty då har det alla sina poler i vänstra halvplanet. (b) Systemet kommer att vara långsamt för små värden på a, när sedan a växer så kommer först systemet att bli oscillativt, komplexa poler. För att sedan minska i oscillativitet och bli snabbare när polerna blir reella igen. För att till slut bli lite långsammare då en pol rör sig tillbaka mot origo för att till slut stanna s. (c) Vi har det slutna systemet G c (s) KG KG 3a s 3 6s s as 6as 8a som var stabilt för a > 0. Nu använder vi oss av slutvärdesteoremet för att ta reda på vad den statiska förstärkningen blir som funktion av a. lim y(t) lim G 3a c(s)u(s)s lim t s 0 s 0 s 3 6s s as 6as 8a 3 8 Alltså är den statiska förstärkningen 3 8 för alla a. (0 p)
Reglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) 0-03-8. (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,
Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka
Reglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)
Reglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna
Lösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Reglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Specifikationer i frekvensplanet ( )
Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet
Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
Övning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Överföringsfunktion 21
Vad är reglerteknik? 8 Analys och styrning av dynamiska system Välj styrsignalen (u(t)) så att systemet (mätsignalen y(t)) uppför sig som önskat (referenssignalen r(t)) trots störningar (v(t)) Vi betraktar
Reglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
TSRT91 Reglerteknik: Föreläsning 4
TSRT91 Reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 16 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
TSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 12 Sammanfattning av kursen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 12 Gustaf Hendeby HT1 2017 1 / 56 Innehåll föreläsning 12: 1. Reglerproblemet 2. Modellbygge
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Lösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen
TENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp för X3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
ERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning
TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: G, TERD TENTAMEN I TSRT9 REGLERTEKNIK TID: 7-- kl. 8: : KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-6994 BESÖKER SALEN: cirka
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
TENTAMEN I REGLERTEKNIK I
TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Sammanfattning TSRT mars 2017
Sammanfattning TSRT2 3 mars 207 Innehåll Överföringsfunktion 4 2 Stegsvar, :a och 2:a ordningens system 4 2. Första ordningens system...................... 4 2.2 2:a ordningens system, poler.....................
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 25-6-5 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
TSRT91 Reglerteknik: Föreläsning 4
Föreläsningar 1 / 16 TSRT91 glerteknik: Föreläsning 4 Martin Enqvist glerteknik Institutionen för systemteknik Linköpings universitet 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
TSIU61: Reglerteknik. Reglerproblemet. Innehåll föreläsning 12: 1. Reglerproblemet: Ex design av farthållare. Sammanfattning av kursen
TSIU6: Reglerteknik Föreläsning 2 Sammanfattning av kursen gustaf.hendeby@liu.se TSIU6 Föreläsning 2 / 56 Innehåll föreläsning 2:. Reglerproblemet 2. Modellbygge ˆ Fysikalisk modell ˆ Identifiering (t
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Reglerteknik AK. Tentamen 16 mars 2016 kl 8 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25
TENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
TENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
Lead-lag-reglering. Fundera på till den här föreläsningen. Fasavancerande (lead-) länk. Ex. P-regulator. Vi vill ha en regulator som uppfyller:
TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby Sammanfattning av föreläsning 6 Regulatorsyntes
TSIU61: Reglerteknik. Lead-lag-regulatorn. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 ˆ Sammanfattning av
1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 8 oktober 206, kl. 2.00-5.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Hans Rosth, tel. 08-47070. Hans kommer och svarar på frågor ungefär kl.0.
En allmän linjär återkoppling (Varför inför vi T (s)?)
TSRT9 Reglerteknik Föreläsning 3 Inger Erlander Klein REGLERTEKNIK Avdelningen för Reglerteknik Institutionen för systemteknik inger.erlander.klein@liu.se Tel: 28665 Kontor: B-huset ingång 23-25 www.control.isy.liu.se/student/tsrt9/vt/
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
TENTAMEN Reglerteknik I 5hp
Denna tentamen gäller Reglerteknik I 5hp ör F3. På sista sidan av tentamen inns ett örsättsblad, som ska yllas i och lämnas in tillsammans med dina lösningar. TENTAMEN Reglerteknik I 5hp Tid: Lördag 19
Reglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
TENTAMEN Reglerteknik I 5hp
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller Reglerteknik I 5hp för F4/IT4/STS3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
TENTAMEN I TSRT22 REGLERTEKNIK
SAL: TENTAMEN I TSRT22 REGLERTEKNIK TID: 27--23 kl. 8:-3: KURS: TSRT22 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Svante Gunnarsson, tel. 3-28747,7-3994847 BESÖKER SALEN:
TENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
TENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
REGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120
REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
ÖVNINGSTENTAMEN Reglerteknik I 5hp
ÖVNINGSTENTAMEN Reglerteknik I 5hp Tid: När det passar dig Plats: Där det passar dig Ansvarig lärare: Någon bra person. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell och matematisk
Frekvensbeskrivning, Bodediagram
Innehåll föreläsning 5 Reglerteknik I: Föreläsning 5 Frekvensbeskrivning, Bodediagram Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
TSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
TENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2013 05 31, kl. 8.00 13.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:
INLÄMNINGSUPPGIFT I. REGLERTEKNIK I för STS3 & X4
SYSTEMTEKNIK, IT-INSTITUTIONEN UPPSALA UNIVERSITET DZ 2015-09 INLÄMNINGSUPPGIFTER REGLERTEKNIK I för STS3 & X4 INLÄMNINGSUPPGIFT I Inlämning: Senast fredag den 2:a oktober kl 15.00 Lämnas i fack nr 30,
Reglerteknik I: F3. Tidssvar, återkoppling och PID-regulatorn. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F3 Tidssvar, återkoppling och PID-regulatorn Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 12 Poler och tidssvar Stegsvar u(t) G y(t) Modell Y (s) = G(s)U(s) med överföringsfunktion
Lösningsförslag TSRT09 Reglerteori
Lösningsförslag TSRT9 Reglerteori 217-3-17 1. (a) Underdeterminanter 1 s + 2, 1 s + 3, 1 s + 2, 1 (s + 3)(s 3), s 4 (s + 3)(s 3)(s + 2), vilket ger MGN dvs ordningstal 3. P (s) = (s + 3)(s 3)(s + 2), (b)
TENTAMEN Reglerteknik I 5hp
TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och
TENTAMEN REGLERTEKNIK TSRT15
TENTAMEN REGLERTEKNIK TSRT5 SAL: TER3+4 TID: 8 december 2, klockan 4-9 KURS: TSRT5 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL BLAD: 3 exklusive försättsblad ANSVARIG LÄRARE: Johan Löfberg JOURHAVANDE
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Välkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)