Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT12)
|
|
- Bernt Lundqvist
- för 5 år sedan
- Visningar:
Transkript
1 Lösningsförslag till tentamen i Reglerteknik Y/D (TSRT) (a) Nolställen: - (roten till (s + ) 0 ) Poler: -, -3 (rötterna till (s + )(s + 3) 0) Eftersom alla poler har strikt negativ realdel är systemet stabilt. (b) i. Nej. Ansätt F (s) K I /s och ta fram G c (s) + KI s s + K I s s K I s(s )+K I. Det karakteristiska polynomet tar formen s s + K I och ger poler till det slutna systemet i s ± K I. Åtminstone en av dessa poler kommer alltid ligga i höger halvplan oavsett K I. Systemet kan därmed inte stabiliseras av en I-regulator. ii. Ja. Med ansatsen F (s) K P, fås G c (s) + K P s +K P s K P s +K P. Det slutna systemet har således polen s K P. K P > ger därför ett stabilt slutet system eftersom polen då ligger i vänster halvplan. (c) Fördelar: Eftersom D-delen bestäms av felets derivata så kan man ta hänsyn till förändringar i felet innan det det slagit igenom. Därigenom får vi mindre oscilationer. (d) Nackdelar: Regulatorn blir extra känslig för mätbrus, eftersom detta mätbrus deriveras av D-delen. i. En ökning av snabbheten med en faktor två och bibehållen översläng ger dubblerad skärfrekvens och bibehållen fasmarginal w c,d w c, φ m,d φ m ii. En minskning av överslängen och bibehållen snabbhet ger bibehållen skärfrekvens och ökad fasmarginal w cd w c, φ m,d > φ m. (a) G 4 - A- IV: Alla överföringsfunktioner har statisk förstärkning utom G 4 som har statisk förstärkning. Eftersom alla bodediagram har samma statiska förstärkning förutom Bodediagram A, kan vi konstatera att detta bodediagram tillhör G 4. Vidare, eftersom alla stegsvar har samma slutvärde förutom Stegsvar IV som har dubbelt så stort slutvärde, hör G 4 till detta stegsvar. G - C - II: Överföringsfunktionerna G och G 3 har två reella poler och inga nollställen. Det ger ett monotont avtagende bodediagram samt ett monotont växande stegsvar. Följaktligen måste resonanstoppen i bodediagram C och överslängen i Stegsvar II komma från G. (Resonanstoppen i Bodediagram C uppstår pga att nollstället i G har lägre frekvens än polerna. Då kommer nollstället att bryta upp amplitudkurvan innan polerna bryter ner den. Denna resonanstop ger i sin tur upphov till en översläng i stegsvaret.) G - B - I, G 3 - D - III: Den dominerande polen för G ligger i s 5 som är snabbare än den dominerande polen för G 3 som ligger i s. Eftersom bandbredden i Bodediagram B är högre än bandbredden i Bodediagram D och eftersom Stegsvar I är snabbare än Stegsvar III fås G - B - I och G 3 - D - III. (b) i. Ett icke-minfassystem har ett eller flera nollställen i högra halvplanet. ii. Det slutna systemet ges av G c (s) + K(s + )(s ) (s + )(s + 3)(s + 4) + K(s + )(s )
2 Vi får då P (s) (s + )(s + 3)(s + 4), n 3 Q(s) (s + )(s ), m Startpunkter: P (s) 0 s, s 3, s 4 Slutpunkter: Q(s) 0 s, s Asymptoter: - Antal: n m - Riktningar: π, dvs negativa reella exeln Delar av reella axeln som tillhör rotorten: (, -4], [-3, -) och [-, ). Sålunda kommer roten som börjar i -4 att gå mot oändligheten, roten som börjar i -3 att gå mot - och roten som börjar i - att gå mot, alla tre längs reella axeln. Det ger en rotort enligt Figur Root Locus 3 Imaginary Axis Real Axis Figur : Rotort för systemet i uppgift b) Den långsamma polen som startar i s kommer för ökande K att vandra längs reella axeln mot vänstra halvplanet och kommer därmed att passera den imaginära axeln via origo. När detta sker fås genom insättning av s 0 i P (s) + KQ(s) 0, vilket ger P (0) + KQ(0) 0 K 6 Sålunda är systemet stabilt för K < (a) Känslighetsfunktionen S(s) är överföringsfunktionen från v till y. Vi kan nu använda oss av att det faktum att för ett stabilt linjärt system så får vi för en sinus-signal in, en sinus-signal ut, när transienterna har dött ut. Utsignalen kommer att ha följande utseende y(t) S(iω 0 ) sin(ω 0 t + arg S(ωi)) när v(t) sin(ω 0 t) Här analyserar vi en störning med frekvens ω 0 [rad/s]. Ur bodediagrammet för S(s) kan vi avläsa och därmed S(i ) 5 db 0 (5/0).7 arg S( i) 40 y(t).7 sin(t + 40 )
3 (b) Överföringsfunktionen från n till y ges den komplementära känslighetsfunktionen T (s) + G c(s). Förstärkningen av mätbruset kan därför bestämmas ur bodediagrammet för det slutna systemet G c. Därur kan vi avläsa att mätbruset dämpas G c (iw) < för frekvenser w >. [rad/s] och att det förstärks G c (iw) > för frekvenser w <. [rad/s] (och då speciellt kring det slutna systemets resonansfrekvens w 0.8 [rad/s]). (c) Vid den önskade skärfrekvensen ω c,d [rad/s] är fasen ungefär arg G(iω c,d ) 75. Vi har alltså bara 5 fasmarginal och måste öka φ max (45 5 )+6 46 för att uppnå 45. De extra 6 är för att kompensera för den maximala fasförlusten som lag-länken kan orsaka vid skärfrekvensen. I figur 5.3 på sidan 06 i läroboken ser vi att β 0.5 borde räcka för att klara kravet på fasmarginal. För att placera maximala fasökningen vid den önskade skärfrekvensen väljer vi τ D ω c,d β.3. För att w c,d rad/s verkligen ska vara en skärfrekvens måste följande gälla K F lead (iω c,d ) G(iω c,d) }{{}}{{} 0.8 β K β G(iω c,d ). där G(iω c,d ) 5 db 0 5/0 0.8 kan avläsas ur bodediagrammet för G. Överföringsfunktionen från referenssignalen till reglerfelet är E(s) + R(s) För låga frekvenser är arg G(iω) 90 och G(iω) avtar med 0 db/dekad. För låga frekvenser beter sig alltså systemet som en integrator G(s) C/s Då en ramp har laplacetransformen R(s) /s får vi från slutvärdesteoremet lim e(t) lim se(s) lim s t s 0 s 0 + s K γ lim sg(s) s 0 }{{} C γ K C 0 vilket ger γ 0. För att lag-länken inte ska försämra fasmarginalen alltför mycket väljs enligt tumregeln τ I 0/w c,d 5.0. Totalt får vi alltså F (s) K (τ Ds + )(τ I s + ) (βτ D s + )(τ I s + γ) med parametrarna valda enligt ovan. 4. (a) Med de givna tillståndsvariablerna fås ẋ θ x och ẋ θ a J x + J u där kraften u F är insiganl. Tillsammans med mätningen y θ x ger detta tillståndsformen ( ) ( ) 0 0 ẋ 0 a x + u J J y ( 0 ) x. 3
4 (b) Tillståndsåterkopplingen u Lx + r ger att det återkopplade systemet får den karakteristiska ekvationen det(λi (A BL)) 0 λ + ( + l )λ + l 0 Polplacering i motsvarar den önskade ekvationen (λ+) λ +4λ+4 0. Jämförelse ger l 4 och l 3 och tillståndsåterkopplingen blir u 4x 3x + r. (c) Observatörens poler kan placeras godtyckligt endast om systemet är observerbart. Systemet är observerbart ( ) om observerbarhetsmatrisen O har full rang C (det O 0), där O. Om vi mäter kursvinkeln θ blir C ( 0 ) CA ( ) 0 och vi får det O det 0, dvs observerbart. Om vi mäter vinkelhastigheten ω blir C ( 0 ) ( ) 0 0 och vi får det O det 0, dvs 0 ej observerbart. Sålunda kan vi placera observatörens poler godtyckligt om vi väljer att mäta kursvinkeln θ men inte om vi väljer att mäta vinkelhastigheten ω, ty då är systemet ej observerbart. Observatörens poler avgör hur snabbt rekonstruktionsfelen avtar. Om observatörens poler vore långsammare än det slutna systemets poler skulle regulatorn få förlita sig på alltför gamla skattningar. Sålunda bör observatörens poler vara snabbare än det återkopplade systemets poler. Vi bör dock inte göra observatörens poler allför snabba, eftersom den då blir känsligare för mätfel. Något snabbare poler än återkopplingen är en bra kompromiss. Eftersom det återkopplade systemet har sina båda poler i - är det rimligt att lägga observatörens båda poler i -3. (d) Om vi är intresserade av att använda en liten styrsignal u(t) till priset av längre insvängningstid för x(t) ska u(t) -termen i integralen straffas mycket hårdare än x(t) termen. Detta åstadkommes med ett litet Q. Om vi vill använda så liten styrsignal som möjligt ska vi sålunda välja Q 0. Då blir kriteriet J 0 u(t) dt vilket har sitt minimum då u(t) 0. Detta är en stabiliserande återkoppling eftersom systemets systemmatris A har sitt egenvärde i höger halvplan. Lösningen blir alltså att inte använda någon kraft alls, utan låta det stabila systemet svänga in sig självt mot referenssignalen (a) Laplacetransformering ger Js θ(s) F (s) asθ(s) θ(s) F (s) s(js + a) }{{} G(s) där systemets överföringsfunktion blir G(s) s(js+a) (b) Systemet beskrivs av modellen G(s) medan det verkliga systemet ges av G 0 (s) s( Js + a) s(( J + δ)s + a) 4
5 Det relativa modellfelet G (s) ges då av G 0 (s) G(s)( + G (s)) G (s) G0 (s) G(s) G(s) (c) Vi har F (s) 4 ges då av T (s) δs (J + δ)s + a och G(s). Den komplimentära känslighetsfunktionen s +s + /4 s + s + /4 /4 (s + /) Vi konstaterar att F (s) stabiliserar G(s) ty det slutna systemet G c (s) T (s) har poler endast i vänstra halvplanet. Vidare har G(s) och G 0 (s) samma antal poler i höger halvplan (origo inräknat) då δ > 0, nämligen varsin. Slutligen går både och F (s)g 0 (s) mot noll då s går mot oändligheten ty G(s) och G 0 (s) har fler poler än nollställen. Vi kan då använda robusthetskriteriet för att visa att det återkopplade systemet är robust mot alla δ > 0, dvs att det återkopplade systemet är stabilt för alla val av δ > 0 i G 0 (s). Kravet blir då där T (iw) < G (iw) w + δ)s + ( G (s) δs Eftersom T (s) endast har reella poler och inga nollställen kommer amplitudkurvan T (iw) vara monotont avtagande för ökande w. Även / G (iw) kommer att avta monotont för ökande w eftersom den har lutning - för låga frekvenser som bryts upp mot lutning 0 efter dess reella nollställe. Det ger en skiss av T (iw) och / G (iw) enligt Figur. Bode Diagram / G (s) Magnitude (abs) (d+)/d T(s) Frequency (rad/sec) Figur : Skiss av bodediagram för T (s) och / G (s) i uppgift 5b Från skissen inser vi att det maximala värdet för T (iw) ges av lim w 0 T (iw) och det minimala värdet för G (iw) ges av lim w G (iw). Eftersom T (iw) lim w 0 T (iw) lim G (iw) > lim w (iw + /) + δ)iw + ( δiw + δ δ w 0 /4 G (iw) lim w är robusthetskriteriet uppfyllt, ty < +δ δ δ > 0. 5
Figur 2: Bodediagrammets amplitudkurva i uppgift 1d
Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan
Läs merReglerteknik AK Tentamen
Reglerteknik AK Tentamen 20-0-7 Lösningsförslag Uppgift a Svar: G(s) = Uppgift b G c (s) = G(s) = C(sI A) B + D = s. (s+)(s+2) Slutna systemets pol blir s (s + )(s + 2). G o(s) + G o (s) = F (s)g(s) +
Läs merREGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 00 0 4, kl. 4.00 9.00. (a) Stegsvaret ges av y(t) =K( e t/t ). Från slutvärdet fås K =, och tiskonstanten kan avläsas
Läs merLösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL000/EL00/EL20 20-0-3 a. Överföringsfunktionen från u(t) till y(t) ges av Utsignalen ges av G(s) = y(t) = G(iω) A sin(ωt + ϕ + arg G(iω)) = 2 sin(2t). Identifierar
Läs merFigure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)
Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G
Läs merLösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Läs merTENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Torsdag 5 december 206, kl. 3.00-6.00 Plats: Fyrislundsgatan 80, sal Ansvarig lärare: Fredrik Olsson, tel. 08-47 7840. Fredrik kommer och svarar på frågor
Läs merLösningsförslag till tentamen i Reglerteknik (TSRT19)
Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Tisdag 23 oktober 208, kl. 4.00-7.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Läs merÖvning 3. Introduktion. Repetition
Övning 3 Introduktion Varmt välkomna till tredje övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Nästa gång är det datorövning. Kontrollera att ni kan komma in i XQ-salarna. Endast en kort genomgång,
Läs merReglerteknik AK, Period 2, 2013 Föreläsning 6. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 6 Jonas Mårtensson, kursansvarig Senaste två föreläsningarna Frekvensbeskrivning, Bodediagram Stabilitetsmarginaler Specifikationer (tids-/frekvensplan, slutna/öppna
Läs merTENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Läs merLösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 060 Uppgift a G c (s G(sF (s + G(sF (s s + 3, Y (s s + 3 s ( 3 s s + 3 Svar: y(t 3 ( e 3t Uppgift b Svar: (i insignal u levererad insulinmängd från pumpen, mha tex spänningen
Läs merReglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merFrekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,
Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens
Läs merREGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)
Läs merReglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merReglerteknik AK. Tentamen 27 oktober 2015 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 27 oktober 205 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
Läs merReglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Läs merVälkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet
Läs merReglerteknik AK, Period 2, 2013 Föreläsning 12. Jonas Mårtensson, kursansvarig
Reglerteknik AK, Period 2, 213 Föreläsning 12 Jonas Mårtensson, kursansvarig Sammanfattning Systembeskrivning Reglerproblemet Modellering Specifikationer Analysverktyg Reglerstrukturer Syntesmetoder Implementering
Läs merTSIU61: Reglerteknik. Sammanfattning av kursen. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 12 Sammanfattning av kursen Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 12 Gustaf Hendeby HT1 2017 1 / 56 Innehåll föreläsning 12: 1. Reglerproblemet 2. Modellbygge
Läs merA. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.
Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen 2015 04 08, kl. 8.00 13.00
REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL0 Kortfattade lösningsförslag till tentamen 05 04 08, kl. 8.00 3.00. (a) Signalen u har vinkelfrekvens ω = 0. rad/s, och vi läser av G(i0.) 35 och arg G(i0.)
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 216-8-19 Sal (1) (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som
Läs merTENTAMEN I REGLERTEKNIK Y TSRT12 för Y3 och D3. Lycka till!
TENTAMEN I REGLERTEKNIK Y TSRT2 för Y3 och D3 TID: 7 mars 25, klockan 4-9. ANSVARIGA LÄRARE: Mikael Norrlöf, tel 28 27 4, Anna Hagenblad, tel 28 44 74 TILLÅTNA HJÄLPMEDEL: Läroboken Glad-Ljung: Reglerteknik,
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 23-- Sal () T,T2,KÅRA (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merTENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp för X3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
Läs merÖverföringsfunktion 21
Vad är reglerteknik? 8 Analys och styrning av dynamiska system Välj styrsignalen (u(t)) så att systemet (mätsignalen y(t)) uppför sig som önskat (referenssignalen r(t)) trots störningar (v(t)) Vi betraktar
Läs merReglerteknik AK. Tentamen kl
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merTENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 25-6-5 Sal () TER2 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merTENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
Läs merTSRT91 Reglerteknik: Föreläsning 4
TSRT91 Reglerteknik: Föreläsning 4 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 16 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN I REGLERTEKNIK I
TENTAMEN I REGLERTEKNIK I SAL: TER2 TID: 6 mars 2, klockan 8-3 KURS: TSRT9, Reglerteknik I PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 9 ANSVARIG
Läs merLösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL
Lösningar till Tentamen i Reglerteknik AK EL/EL/EL 9-6- a. Ansätt: G(s) = b s+a, b >, a >. Utsignalen ges av y(t) = G(iω) sin (ωt + arg G(iω)), ω = G(iω) = b ω + a = arg G(iω) = arg b arg (iω + a) = arctan
Läs merTENTAMEN Reglerteknik I 5hp
TENTAMEN Reglerteknik I 5hp Tid: Tisdag 8 juni 00, kl 8.00 3.00 Plats: Polacksbackens skrivsal Ansvarig lärare: Kjartan Halvorsen, tel 08-473070. Kjartan kommer och svarar på frågor ungefär kl 9.30 och
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merREGLERTEKNIK, KTH. REGLERTEKNIK AK EL1000, EL1110 och EL1120
REGLERTEKNIK, KTH REGLERTEKNIK AK EL1000, EL1110 och EL1120 Tentamen 20111017, kl 14:00 19:00 Hjälpmedel: Observandum: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande), räknetabeller,
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Fredag 9 mars 208, kl. 4.00-7.00 Plats: BMC B:3 Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: G, TERD TENTAMEN I TSRT9 REGLERTEKNIK TID: 7-- kl. 8: : KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-6994 BESÖKER SALEN: cirka
Läs merTENTAMEN Reglerteknik 4.5hp X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 4.5hp. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans
Läs merTENTAMEN Reglerteknik I 5hp
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller Reglerteknik I 5hp för F4/IT4/STS3. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24-4-22 Sal () TER2,TER3,TERF (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Läs merTSIU61: Reglerteknik. Regulatorsyntes mha bodediagram (1/4) Känslighet Robusthet. Sammanfattning av föreläsning 7
TSIU6 Föreläsning 8 Gustaf Hendeby HT 207 / 8 Innehåll föreläsning 8 TSIU6: Reglerteknik Föreläsning 8 Känslighet Robusthet Gustaf Hendeby ˆ Sammanfattning av föreläsning 7 ˆ Känslighet mot störningar
Läs mer1RT490 Reglerteknik I 5hp Tentamen: Del B
RT490 Reglerteknik I 5hp Tentamen: Del B Tid: Måndag 8 januari 08, kl. 4.00-7.00 Plats: Bergsbrunnagatan 5, sal Ansvarig lärare: Hans Rosth, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl
Läs merREGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen 2009 12 15, kl. 14.00 19.00 Hjälpmedel: Kursboken i Reglerteknik AK (Glad, Ljung: Reglerteknik eller motsvarande) räknetabeller, formelsamlingar
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 24--4 Sal () TER,TERD (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal
Läs merSammanfattning TSRT mars 2017
Sammanfattning TSRT2 3 mars 207 Innehåll Överföringsfunktion 4 2 Stegsvar, :a och 2:a ordningens system 4 2. Första ordningens system...................... 4 2.2 2:a ordningens system, poler.....................
Läs merReglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Läs merTSIU61: Reglerteknik. Reglerproblemet. Innehåll föreläsning 12: 1. Reglerproblemet: Ex design av farthållare. Sammanfattning av kursen
TSIU6: Reglerteknik Föreläsning 2 Sammanfattning av kursen gustaf.hendeby@liu.se TSIU6 Föreläsning 2 / 56 Innehåll föreläsning 2:. Reglerproblemet 2. Modellbygge ˆ Fysikalisk modell ˆ Identifiering (t
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-10-23 Sal (1) TER1 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merVälkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:
Läs merERE103 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system System- och reglerteknik ERE03 Reglerteknik D Tentamen 207-0-2 08.30-2.30 Examinator: Jonas Fredriksson, tel 359. Tillåtna hjälpmedel: Typgodkänd
Läs merLead-lag-reglering. Fundera på till den här föreläsningen. Fasavancerande (lead-) länk. Ex. P-regulator. Vi vill ha en regulator som uppfyller:
TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby Sammanfattning av föreläsning 6 Regulatorsyntes
Läs merSpecifikationer i frekvensplanet ( )
Föreläsning 7-8 Specifikationer i frekvensplanet (5.2-5.3) Återkopplat system: Enligt tidigare gäller att där och Y (s) =G C (s)r(s) G C (s) = G O(s) 1+G O (s) G O (s) =F (s)g(s) är det öppna systemet
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER2 TENTAMEN I TSRT9 REGLERTEKNIK TID: 29-4-23 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 3-28393 BESÖKER SALEN: cirka
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2014-03-17 Sal (1) TER2,TER3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merÖVNINGSTENTAMEN Reglerteknik I 5hp
ÖVNINGSTENTAMEN Reglerteknik I 5hp Tid: När det passar dig Plats: Där det passar dig Ansvarig lärare: Någon bra person. Tillåtna hjälpmedel: Kursboken (Glad-Ljung), miniräknare, Laplace-tabell och matematisk
Läs merTSIU61: Reglerteknik. Lead-lag-regulatorn. Gustaf Hendeby.
TSIU61: Reglerteknik Föreläsning 7 Lead-lag-regulatorn Tidsfördröjning Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 7 Gustaf Hendeby HT1 2017 1 / 24 Innehåll föreläsning 7 ˆ Sammanfattning av
Läs merTSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning
TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning
Läs merVälkomna till TSRT19 Reglerteknik Föreläsning 6. Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden!
Välkomna till TSRT19 Reglerteknik Föreläsning 6 Sammanfattning av föreläsning 5 Lite mer om Bodediagram Den röda tråden! Sammanfattning av förra föreläsningen 2 G(s) Sinus in (i stabilt system) ger sinus
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: T1, KÅRA TID: 9 juni 2017, klockan 14-19 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merTSRT91 Reglerteknik: Föreläsning 4
Föreläsningar 1 / 16 TSRT91 glerteknik: Föreläsning 4 Martin Enqvist glerteknik Institutionen för systemteknik Linköpings universitet 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG
Läs merFöreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik
Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2015-06-08 Sal (1) TER 2, TER 3 (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Läs merReglerteknik AK. Tentamen 16 mars 2016 kl 8 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 6 mars 26 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 25
Läs merERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:
Läs merVälkomna till TSRT19 Reglerteknik M Föreläsning 9
Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Läs merReglerteknik AK, FRTF05
Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 23 augusti 207 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Läs merEn allmän linjär återkoppling (Varför inför vi T (s)?)
TSRT9 Reglerteknik Föreläsning 3 Inger Erlander Klein REGLERTEKNIK Avdelningen för Reglerteknik Institutionen för systemteknik inger.erlander.klein@liu.se Tel: 28665 Kontor: B-huset ingång 23-25 www.control.isy.liu.se/student/tsrt9/vt/
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Torsdag 20 oktober 20, kl. 4.00-7.00 Plats: Gimogatan 4, sal Ansvarig lärare: jartan Halvorsen, kommer och svarar på frågor ungefär kl 5.30. Tillåtna hjälpmedel:
Läs merVälkomna till TSRT19 Reglerteknik Föreläsning 7
Välkomna till TSRT19 Reglerteknik Föreläsning 7 Sammanfattning av föreläsning 6 Kretsformning Lead-lag design Labförberedande exempel Instabila nollställen och tidsfördröjning (tolkning i frekvensplanet)
Läs merTENTAMEN Reglerteknik I 5hp
Denna tentamen gäller Reglerteknik I 5hp ör F3. På sista sidan av tentamen inns ett örsättsblad, som ska yllas i och lämnas in tillsammans med dina lösningar. TENTAMEN Reglerteknik I 5hp Tid: Lördag 19
Läs merLösningsförslag till tentamen i Reglerteknik fk M (TSRT06)
Lösningsförslag till tentamen i Reglerteknik fk M (TSRT6) 216-1-15 1. (a) Känslighetsfunktionen S(iω) beskriver hur systemstörningar och modellfel påverkar utsignalen från det återkopplade systemet. Oftast
Läs merTSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN I TSRT22 REGLERTEKNIK
SAL: TENTAMEN I TSRT22 REGLERTEKNIK TID: 27--23 kl. 8:-3: KURS: TSRT22 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Svante Gunnarsson, tel. 3-28747,7-3994847 BESÖKER SALEN:
Läs merTSRT91 Reglerteknik: Föreläsning 9
TSRT91 Reglerteknik: Föreläsning 9 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 20 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN I TSRT91 REGLERTEKNIK
SAL: TER3 TENTAMEN I TSRT9 REGLERTEKNIK TID: 28-4-3 kl. 4: 9: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Martin Enqvist, tel. 7-69294 BESÖKER SALEN: cirka
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER, TER 2, TER E TID: 4 mars 208, klockan 8-3 KURS: TSRT2, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merNyquistkriteriet, kretsformning
Sammanfattning från föreläsning 5 2 Reglerteknik I: Föreläsning 6 Nyquistkriteriet, kretsformning Fredrik Lindsten fredrik.lindsten@it.uu.se Kontor 2236, ITC Hus 2, Systemteknik Institutionen för informationsteknologi
Läs mer