i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
|
|
- Gustav Ek
- för 7 år sedan
- Visningar:
Transkript
1 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen y(t) beror av C:s laddning Q(t): y(t) = Q(t) C Strömmen i(t) transporterar laddning till C: i(t) = dq(t) dt = C dy(t) dt Strömmen ger ett förhållande mellan x(t) och y(t): () (2) Kombineras ekvationerna (2) och (3) fås x(t) = y(t) + i(t)r (3) RC x(t) = dy(t) y(t) + (4) RC dt Denna differentialekvation kan lösas med hjälp av integrerande faktor: multiplicera båda sidor i ekvation (4) med exp(t/rc) och skriv om högerledet. RC e RC t x(t) = d ( y(t)e t) RC (5) dt Om vi förutsätter att x() = y() = kan vi lösa ekvation (5) genom att integrera båda sidor från τ = till τ = t. y(t)e RC t = t RC e RC τ x(τ)dτ (6) 2
2 y(t) = t RC e RC (t τ) x(τ)dτ (7) Om x(t) = och h(t) = för t < kan vi se att ekvation (7) är en faltning: där impulssvaret h(t) ges av y(t) = h(t) = t h(t τ)x(τ)dτ (8) { RC e RC t, t, t < Faltning är en linjär operation och därför är kretsen ett linjärt system. Vi har sett till att impulssvaret är kausalt, men vi kan också konstatera att systemet är dynamiskt och stabilt (h(t) absolut integrerbart). 2.2 Sinussignaler 2.2. En sinus på ingången Beräkna utsignalen y(t) från ett stabilt LTI-system med impulssvar h(t), då insignalen är en sinusvåg. Vad skiljer y(t) och x(t) åt? Hur liknar de varandra? (9) x(t) = sin(ωt) () För kontinuerliga LTI-system använder vi faltningsintegralen: y(t) = = = h(τ) sin (ω[t τ]) dτ h(τ) [sin(ωt) cos(ωτ) cos(ωt) sin(ωτ)] dτ h(τ) cos(ωτ)dτ sin(ωt) h(τ) sin(ωτ)dτ cos(ωt) () 3
3 Impulssvar från insignal-utsignalstabila LTI-system har egenskapen h(t) dt = K < (2) Därför kan vi sluta oss till att integralerna i sista steget i ekvation () konvergerar. Vi definierar K c (h, ω) K s (h, ω) h(τ) cos(ωτ)dτ h(τ) sin(ωτ)dτ (3) Eftersom en summa av sinus- och cosinusfunktioner av samma frekvens också är en sinusfunktion kan vi skriva om sista ledet i ekvation () (se βeta): y(t) = K c (h, ω) sin(ωt) K s (h, ω) cos(ωt) = ( ( Kc 2 (h, ω) + Ks 2 (h, ω) sin ωt + arctan K )) s(h, ω) K c (h, ω) A(h, ω) sin (ωt + φ(h, ω)) (4) Man brukar benämna A(h, ω) systemets frekvensgång, och φ(h, ω) systemets fasgång. Vid en jämförelse mellan in- och utsignal kan vi se att:. Amplituden har förändrats. Förändringen beror på impulssvaret h(t) och vinkelfrekvensen ω. 2. Fasen har förskjutits. Förskjutningen beror på impulssvaret h(t) och vinkelfrekvensen ω. 3. In- och utsignal har samma vinkelfrekvens. Vi får alltså ut en signal med samma form som insignalen. (Tanken med denna uppgift var att visa denna viktiga egenskap, inte härleda de specifika formlerna för A och φ.) Tänk på att detta gäller enbart för linjära system och sinus-signaler. Olinjära system spottar ur sig andra sinusfrekvenser än den på ingången. Ett linjärt system förvränger generellt andra signaler, t.ex. en fyrkantvåg Ett förenklat pianoackord Vi ser tonerna från ett piano som en insignal x(t). En enkel modell av signalen är x(t) = K a k sin(ω k t) (5) k= 4
4 där vi har tagit med K rena toner. Ljudet passerar ett rum innan det når lyssnaren. Rummets akustik beskrivs av impulssvaret h(t) (dämpning, ekon, m.m.). Vad hör lyssnaren, d.v.s. vad blir y(t)? Antag att h(t) beskriver ett LTI-system. Under antagandet att rumsakustiken är linjär kan vi som vanligt skriva y(t) = h(t) x(t). Linjäriteten medför att superpositionsprincipen gäller: vi kan köra varje oskalad insignal sin(ω k t) genom systemet och sedan skala och summera utsignalerna. K K y(t) = y k (t) = k= k= a k h(τ) sin(ω k [t τ])dτ (6) Integralen i ekvation (6) löste vi i uppgift Använder vi resultatet från ekvation (4) får vi y(t) = K A(h, ω k ) sin(ω k t + φ(h, ω k )) (7) k= Vad lyssnaren hör beror alltså på hur rummet dämpar olika toner (genom A) och hur tonerna förskjuts (genom φ). Poängen är att A(h, ω) och φ(h, ω) tillsammans beskriver systemet då insignalen består av sinussignaler. I dessa fall innehåller A och φ samma information som h(t). Som exempel kan vi ta en situation där tonerna från pianot går helt opåverkade till lyssnarens öra (inga ekon, ingen dämpning). Däremot sker en liten tidsfördröjning T på grund av ljudets ändliga hastighet. Detta motsvarar impulssvaret i figur 2. h(t) T t Figur 2: Tidsfördröjning av ljud. Integralerna i ekvation (3) kollapsar då till K c (h, ω) = cos(ωt ) K s (h, ω) = sin(ωt ) (8) 5
5 och vi får A(ω) = φ(ω) = ωt (9) Denna rumsakustik dämpar inte någon sinusfrekvens, men inför en fasförskjutning som motsvarar tidsfördröjningen Frekvensgång Ett LTI-systems frekvensgång A(ω) (som beskriver förändringen av sinussignalers amplitud) bestäms av impulssvaret h(t). Beräkna frekvensgången A(ω) för systemet, t < h(t) =, t (2), t > Utgå gärna från resultatet från uppgifterna 2.2. och Vi behöver beräkna integralerna i ekvation (3): K c (h, ω) = K s (h, ω) = = sin(ω) ω cos(ωt)dt sin(ωt)dt = cos(ω) ω (2) Frekvensgången systemets dämpning (eller förstärkning) av amplituden hos sinussignaler kan nu beräknas med hjälp av ekvation (4). A(ω) = sin 2 (ω) + cos ω 2 (ω) + 2 cos(ω) 2 = cos(ω) (22) ω Denna frekvensgång visas i figur 3. Här kan vi se att systemet behandlar olika frekvenser olika. Till exempel dödar det alla signaler av typen sin(n2πt), n. Generellt föredrar det också låga frekvenser framför höga. Vi har ett filter! 6
6 A(w) w Figur 3: Filter med rektangulärt impulssvar Sinusar i fyrkant Gör en första ordningens fourierapproximation av fyrkantvågen x(t) i figur 4. Beteckna perioden T. x(t) t - Figur 4: Fyrkantvåg med amplitud och period T. Fyrkantvågen x(t) är en periodisk signal som uppfyller Dirichlets villkor (se ekvation (3.2), sidan 77 i Svärdström). Alltså kan vi skriva den som en oändlig summa av sinusfunktioner: en fourierserie. x(t) = A n cos(nω t) + B n sin(nω t) (23) n= Fourier kom helt enkelt på att periodiska funktioner går att bygga av sinusfunktioner. Det som varierar för olika funktioner är ω, A n och B n : 7
7 ω = 2π T A n = 2 T T /2 x(t) cos(nω t)dt B n = 2 T T /2 T /2 T /2 x(t) sin(nω t)dt (24) Koefficienterna A n och B n säger hur mycket x(t) liknar cos(nω t) respektive sin(nω t). En första ordningens approximation innebär att vi tar med termer upp t.o.m. n = (vi använder de grundläggande byggstenarna). ˆx (t) = A n cos(nω t) + B n sin(nω t) n= = A + A cos(ω t) + B sin(ω t) (25) Räknar vi ut likhetskoefficienterna med hjälp av ekvation (24) får vi A = 2 T T /2 x(t)dt = A = 2 T T /2 T /2 T /2 x(t) cos(ω t)dt = 4 π B = 2 T T /2 x(t) sin(ω t)dt T /2 = (26) Koefficienten A säger hur mycket likspänning som finns i x(t) i det här fallet ingen. Koefficienten B blir noll eftersom x(t) är en jämn funktion medan sin(ω t) är en udda funktion (x(t) liknar inte en udda funktion alls). Se figur 5. ˆx (t) = 4 π cos(ω t) (27) 8
8 T T Figur 5: Första ordningens fourierapproximation av fyrkantvåg. Reflektion : Efter uppgifterna kan vi konstatera följande:. Vi kan bygga periodiska funktioner som summor av sinussignaler. 2. Vi kan från impulssvaret h(t) räkna ut hur sinussignaler och summor av sinussignaler påverkas av ett LTI-system. Här kan man ana betydelsen av frekvensdomänen. Vi har en ekvivalent beskrivning av signaler och system som är oberoende av t. Problemet nu är att inga verkliga signaler är strikt periodiska. Det är här fouriertransformen kommer in i bilden. En icke-periodisk signal kan ses som en periodisk signal där T. Fourierserien övergår då till en integral (se sidan 85 i Svärdström). Kravet är att x(t) är en energisignal, d.v.s. har ändlig energi Signal i frekvensdomänen Hur ser följande signal, ekvation (28), ut i frekvensdomänen? Med andra ord: Vilka sinusar behövs för att bygga den, och hur mycket av varje?, t < x(t) =, t 2 (28), t > 2 Signalen är inte periodisk, så den går inte att skriva som en fourierserie. Däremot kan vi tillämpa fouriertransformen eftersom x(t) är en energisignal: Under förutsättningen att Dirichlets villkor är uppfyllda. 9
9 Vi transformerar x(t) till frekvensdomänen: x 2 (t)dt = < (29) X(ω) = = 2 x(t)e jωt dt e jωt dt = [ e jωt ] 2 jω = [ e jω e j2ω] jω = 2 [ e jω/2 e jω/2 ] e j3ω/2 ω 2j = sin(ω/2) e j3ω/2 (3) ω/2 Transformen X(ω) innehåller information om både amplitud och fas för de sinusvågor som behövs. X(ω) = sin(ω/2) ω/2 φ(ω) = 3 2 ω (3) Det räcker alltså inte med att veta hur mycket av varje frekvens vi behöver fasen behövs också. Tillsammans beskriver de x(t) (se figur 6). Reflektion 2: När vi i uppgift.2. räknade ut hur ett LTI-system påverkade sinussignaler utgick vi från impulssvaret h(t). Ta en titt på ekvationerna (3) och (4): det vi gjorde (utan att veta om det) var att fouriertransformera h(t)! 2 Jämför med ekvationerna (3.52) och (3.53) på sidan 95 i Svärdström. Beroende på vad vi vill göra med ett LTI-system kan vi välja domän. Övergången via fouriertransformen illustreras i figur 7. Vi kallar H(ω) för systemets frekvenssvar, H(ω) för systemets frekvensgång och φ(ω) = arg(h(w)) för systemets fasgång. När det gäller signaler pratar vi om spektrum (X(ω)), amplitudspektrum ( X(ω) ) och fasspektrum (φ(ω)). 2 Det går att se med hjälp av Eulers formel, exp( jωt) = cos(ωt) j sin(ωt).
10 X(w) (a) 5 fi(w) w (b) w Figur 6: Frekvensinnehåll i rektangulär puls. x(t) h(t) y(t)=h(t) x(t) * F F - X(w) H(w) Y(w)=H(w)X(w) Figur 7: Ekvivalens mellan frekvens- och tidsdomän för LTI-system Ideal lågpass Beräkna impulssvaret för ett idealt lågpassfilter som tar bort alla frekvenser över 2 Hz. Tänk på att impulssvaret ska vara reellt! Hur kan vi realisera detta filter? Ett idealt filter tar bort alla oönskade frekvenser fullständigt, medan de önskade inte påverkas alls (varken till fas eller amplitud 3. Alltså vill vi ha {, ω 2π 2 H(ω) = (32), ω > 2π 2 Men, fouriertransformen arbetar också med negativa ω. Frekvenssvaret H(ω) måste specificeras för alla ω för ett entydigt impulssvar ska hittas. Ett impulssvar (eller signal) som är reell i tidsdomänen måste ha symmetrisk frekvensgång (symmetriskt spektrum). Låt ω g beteckna gränsfrekvensen 2π 2 rad/s. 3 Svärdström skriver att det ska vara kausalt och faslinjärt. Det verkar finnas olika definitioner.
11 {, ω ωg H(ω) = (33), ω > ω g Impulssvaret fås via den inversa fouriertransformen h(t) = 2π ω g = 2π ω g H(ω)e jωt dt e jωt dt ] ωg = [ 2π jt ejωt ω g = [ e jω gt e jωgt ] πt 2j = sin(ω gt) πt (34) Som vanligt säger en bild mer än tusen formler. Figur 8 visar en del av impulssvaret för det ideala filtret. Hur ska vi då realisera det här filtret? Det går inte! Impulssvaret är som synes icke-kausalt och filtret kan därför inte byggas. Som beteckningen idealt filter antyder. 45 h(t) t Figur 8: Impulssvar för idealt lågpassfilter. 2
x(t) = sin(ω 0 t) (1) b) Tillåt X(ω) att innehålla diracimpulser (en generalliserad funktion). Vilken signal x(t) har spektrumet X(ω)?
3 Tredje lektionen 3. Frekvensdomänen 3.. Fourier och sinus a) Varför kan vi inte transformera med den vanliga fouriertransformen? = sin(ω t) () b) Tillåt X(ω) att innehålla diracimpulser (en generalliserad
Läs merSpektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Läs merImpulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Läs merTentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Läs merResttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Läs merTentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Läs merKryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Läs merKan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Läs merLösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Läs merTSDT08 Signaler och System I Extra uppgifter
TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +
Läs mer2 Ortogonala signaler. Fourierserier. Enkla filter.
Ortogonala signaler. Fourierserier. Enkla filter. ktuella ekvationer: Se formelsamlingen och förberedelsehäftet. För effektivvärdet av en summa av N ortogonala signaler gäller: ν rms = ν rms1 + ν rms +...
Läs merTentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Läs merDT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merSignal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Läs merSignal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Läs merFrekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Läs merTillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merTentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Läs merSF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Läs merBestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
Läs merKompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs mer1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Läs merInstitutionen för matematik KTH. Tentamensskrivning, , kl B1202/2 Diff och Trans 2 del 2, för F och T.
Institutionen för matematik KTH Tentamensskrivning, 3-5-6, kl. 14. 19.. 5B1/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan för betyg
Läs merGRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Läs merTentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00
Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna
Läs merTeori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Läs merRÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merTentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
Läs merElektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Läs merRita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,
Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan
Läs merSignaler några grundbegrepp
Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett
Läs merTentamen i Elektronik för E, ESS010, 12 april 2010
Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0
Läs merSpektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Läs merSpektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Läs merCirkelkriteriet (12.3)
Föreläsning 3-4 Cirkelkriteriet (12.3) En situation där global stabilitetsanalys kan utföras. r + u G(s) y f( ) där f( ) är en statisk olinjäritet, t ex f(y) = 1 y 0 1 y < 0 eller Antag att: f(y) = y 2
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Läs merAC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date
AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)
Läs merEllära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1
Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se
Läs merSF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
Läs merVälkomna till TSRT19 Reglerteknik Föreläsning 5. Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram
Välkomna till TSRT19 Reglerteknik Föreläsning 5 Sammanfattning av föreläsning 4 Frekvensanalys Bodediagram Sammanfattning av förra föreläsningen 2 Givet ett polpolynom med en varierande parameter, och
Läs merTIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Läs merVäxelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Läs mer2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Läs merDIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Läs merVäxelström i frekvensdomän [5.2]
Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer
Läs merFöreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Läs merUlrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merUlrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merDT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merTENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Läs merSignal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Anders Gustavsson 1997, Maria Magnusson 1998-2018 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet
Läs merKap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Läs merLösningar till tentamen i Transformmetoder okt 2007
Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y
Läs merAlltså är {e 3t, e t } en bas för lösningsrummet, och den allmänna lösningen kan därmed skrivas
ektion 7, Envariabelanalys den 8 oktober 1999 Visa att funktionerna y 1 = e r 1t och y = e r t, där r 1 r, är linjärt oberoende. 17.7. Finn den allmänna lösningen till y 3y = 0. Vi ska visa implikationen
Läs merIntroduktion Digitala filter. Filter. Staffan Grundberg. 12 maj 2016
12 maj 216 Innehåll Introduktion Första ordningens system Andra ordningens system Fördröjning Allmänt om filter Butterworthfilter Första ordningens system Andra ordningens system Fördröjning Allmänt om
Läs merSammanfattning TSBB16
Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).
Läs merAndra ordningens kretsar
Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar
Läs merBildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Läs merFouriermetoder MVE295 - bonusuppgifter
Fouriermetoder MVE295 - bonusuppgifter Edvin Listo Zec 920625-2976 edvinli@student.chalmers.se Sofia Toivonen 910917-4566 sofiato@student.chalmers.se Emma Ekberg 930729-0867 emmaek@student.chalmers.se
Läs merKomplexa tal. j 2 = 1
Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras
Läs merGrundläggande signalbehandling
Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud
Läs merLösningar Reglerteknik AK Tentamen
Lösningar Reglerteknik AK Tentamen 15 1 3 Uppgift 1a Systemet är stabilt ( pol i ), så vi kan använda slutvärdesteoremet för att bestämma Svar: l = lim y(t) = lim sg(s)1 t s s = G()1 = 5l = r = 1 Uppgift
Läs merFöreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
Läs merVad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen
Läs merKomplexa tal. j 2 = 1
1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den
Läs merExtra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015
Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och
Läs merSamtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
Läs merFormalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge
Formalia Modellbygge & Simulering, TSRT62 Föreläsning 1 Labanmälan via länk på kurshemsidan Datortenta i datorsal Fem av lektionerna i datorsal Reglerteknik, ISY, Linköpings Universitet Identifieringslabben
Läs merÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Läs merTentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.
Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt
Läs merReglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merFöreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1
1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut
Läs mer10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera
Läs merKompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Läs merSpektralanalys - konsten att hitta frekvensinnehållet i en signal
Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013
Läs merDiskret representation av kontinuerliga signaler
Kapitel 6 Diskret representation av kontinuerliga signaler I digital signalbehandling är det vanligt att en kontinuerlig signal representeras i form av en diskret sekvens, t.ex. för att överföras eller
Läs merTransformer och differentialekvationer (MVE100)
Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen
Läs merLaboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Läs merTentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00. a+bx e x 2 dx
KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 10 januari 2017 kl. 14:00-19:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära
Läs mer