Spektrala Transformer
|
|
- Ola Mattsson
- för 6 år sedan
- Visningar:
Transkript
1 Spektrala Transformer Fouriertransformer
2 Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier
3 Fouriertransformen Transformerar kontinuerliga signaler från tids- till frekvensdomän = skriver om dem som en summa av sinusar forward och tillbaks från frekvens till tid inverse
4 Fourierserier Specialfall: då f(t) är periodisk blir ω diskret vi samplar frekvensaxeln: ω = kω 0 där ω 0 =2π/T F(kω 0 ) = c k = 1 T T 0 f (t)e jkω 0t dt
5 Fourierserier Om f(t) är reell gäller att c = c k k
6 Fourierseriens egenskaper Beloppet c k ger signalens spektrum Spektrumlutningen ger ett mått på jämnheten i signalen för fyrkantvåg avtar spektrum med 1/n för triangelvåg avtar spektrum med 1/n 2 Integrering i tidsdomänen ökar spektrumlutningen, derivering minskar den Diskontinuiteter i insignalen orsakar ringningar (Gibbs fenomen) 2f1120 Spektrala Transformer för Media Jonas Beskow
7 Transformer i Fourier-familjen Tidsdomän Frekvensdomän Transform Periodisk Kontinuerlig Periodisk Diskret Aperiodisk Kontinuerlig Aperiodisk Diskret Diskret Aperiodisk Diskret Periodisk Kontinuerlig Aperiodisk Kontinuerlig Periodisk Fourierserie DFT (Diskret fouriertransform) Fouriertransform Z-transform
8 DFT Diskret Fouriertransform Fouriertransform av verkliga, samplade signaler inte bara matte: Spektral analys Spektrum & Spektrogram Filtrering & bildbehandling Snabb faltning av långa sekvenser/stora filterkärnor Kodning Spektralbaserad bildkodning (typ JPEG) Ljudkodning (typ MP3) Talteknologi Särdragsextraktion för taligenkänning mm Audio/musik Pitch-shift/time-stretch Och så vidare
9 DFT - domäner DFT transformerar signaler mellan diskret tidsdomän och diskret frekvensdomän N punkter i tidsdomänen ger N punkter i frekvensdomänen
10 DFT - domäner Tidsdomän 2 N=8 Frekvensdomän π/4 π/2 1 π/4 4 n 0 4 π k ω = k2π/n π/4 -π/2 -π/ n: k: ω: 0 π
11 DFT - basvektorer Basvektorerna är N st. phasors 2 3 3π/4 π/2 1 π/4 4 π k ω = k2π/n π/4 -π/2 -π/4 7 6
12 DFT Tid Frekvens (DFT) Frekvens Tid (Invers DFT, IDFT)
13 DFT som en matris
14 DFT som en matris Tid Frekvens (DFT) Frekvens Tid (Invers DFT, IDFT)
15 DFT för reella sekvenser Om x(n) är reell blir X(k) symmetrisk kring N/2: X(N-k) = X(k) *
16 Några DFT-transformpar: impulser ur Steven W. Smith Digital Signal Processing
17 Några DFT-transformpar: fyrkantpulser
18 Några DFT-transformpar: pulser
19 Några DFT-transformpar: gauss-funktioner
20 Ett praktiskt problem Vad innebär det att tidsdoänen blir cirkulär? Diskontinuiteter - påverkar spektrum! sidolober
21 Lösning: fönstring Signalen multipliceras med ett fönster som går mot noll i intervallets ändar! Undertrycker sidolober Något försämrad upplösning i frekvensled
22 FFT Fast Fourier Transform FFT är en effektiv algoritm för att beräkna DFT FFT är helt avgörande för att många applikationer av DFT ska vara praktiskt möjliga! FFT fungerar genom att rekursivt dela upp problemet i mindre problem, s.k. söndra och härska (divide-and-conquer)-metodik
23 Beräkningshastighet Antal multiplikationer: DFT: ~N 2 FFT: ~N log(n) N ggr förbättring N 2 / NlogN
24 DFT/IDFT Kan vi snabba upp beräkningen av IDFT också? Ja! IDFT{X} = DFT{X * }/N FFT kan användas även för invers DFT
25 Sammanfattning Fouriertransformen uttrycker icke-periodiska signaler som kontinuerliga frekvensfunktioner En Fourierserie uttrycker periodiska signaler som en summa av diskreta frekvenskomponenter DFT transformerar mellan diskret tids-domän och diskret frekvensdomän FFT är en algoritm för att beräkna DFT FFT är fundamental i många DSP-tillämpningar
Spektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 768-830 Fouriertransformen Transformerar kontinuerliga signaler
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D DT2/3 Spektrala Transformer Jonas Beskow Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Spektrala Transformer för Media
Spektrala Transformer för Media Filtrering och transformer i 2D Linjär bildbehandling Principerna från -dimensionell signalbehandling kan appliceras även på 2D-signaler Tillämpningar: Bildförbättring (brusreducering)
Tillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
SIGNALANALYS I FREKVENSRUMMET
SIGNALANALYS I FREKVENSRUMMET Fourierserie och Fouriertransform Föreläsning 4 Mätsystem och Mätmetoder, HT-2016 Florian Schmidt Department of Applied Physics and Electronics Umeå University LECTURE OUTLINE
TEM Projekt Transformmetoder
TEM Projekt Transformmetoder Utförs av: Mikael Bodin 19940414 4314 William Sjöström 19940404 6956 Sammanfattning I denna laboration undersöks hur Fouriertransformering kan användas vid behandling och analysering
i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Transformer och differentialekvationer (MVE100)
Chalmers tekniska högskola och Göteborgs universitet Matematik 25 januari 2011 Transformer och differentialekvationer (MVE100 Inledning Fouriertransformen Fouriertransform är en motsvarighet till Fourierserier
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Innehåll. Innehåll. sida i
1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla
Spektralanalys - konsten att hitta frekvensinnehållet i en signal
Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Datorövning: Fouriertransform med Python
Datorövning i Elektromagnetism och vågor (FK5019) Övningsledare: bart.pelssers@fysik.su.se & ashraf@fysik.su.se Datorövning: Fouriertransform med Python Skicka in individuellt skrivna rapporter på engelska
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion?
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Ett problem med Fourier- och Laplacetransformen är att de kräver att signalen som skall transformeras kan skrivas som en
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny
Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och rekonstruktion. DFT.
Signal- och Bildbehandling, TSBB4 Laboration : Sampling och rekonstruktion. DFT. Maria Magnusson, 7-8 Avdelningen för Datorseende, Institutionen för Systemteknik, Linköpings Universitet Laboration. Förberedelser
FOURIERANALYS En kort introduktion
FOURIERAALYS En kort introduktion Kurt Hansson 2009 Innehåll 1 Signalanalys 2 2 Periodiska signaler 2 3 En komplex) skalärprodukt 4 4 Fourierkoefficienter 4 5 Sampling 5 5.1 Shannon s teorem.................................
Signalbehandling. Andreas Fhager
Signalbehandling Andreas Fhager andreas.1ager@chalmers.se Innehåll Modellering av fysiskt fenomen Analoga/digitala signaler Nervsignaler Periodiska funkboner/fourierserie Frekvensspektrum Filter Faltning
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Projekt 3: Diskret fouriertransform
Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Frekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
2 Laborationsutrustning
Institutionen för data- och elektroteknik 2002-02-11 1 Inledning Denna laboration syftar till att illustrera ett antal grundbegrepp inom digital signalbehandling samt att närmare studera frekvensanalys
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
7. Sampling och rekonstruktion av signaler
Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid
Signaler, information & bilder, föreläsning 14
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laborator Department o Electrical Engineering michael.elsberg@liu.se Översikt D signalbehandling (bildbehandling) orts. Faltningskärnor
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Föreläsning 3: Dekomposition. Dekomposition
Föreläsning 3: Dekomposition Dekomposition Dekomposition är en generell metod för att lösa problem Metoden bygger på att man delar upp ett problem i delproblem av samma typ som ursprungsproblemet Uppdelningen
EXEMPEL 1: ARTVARIATION FÖRELÄSNING 1. EEG frekvensanalys EXEMPEL 2: EEG
FÖRELÄSNING EXEMPEL : ARTVARIATION Kurs- och transform-översikt. Kursintroduktion med typiska signalbehandlingsproblem och kapitelöversikt. Rep av transformer 3. Rep av aliaseffekten Givet: data med antal
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler
Signal- och Bildbehandling, TSBB14 Laboration 1: Kontinuerliga signaler Anders Gustavsson 1997, Maria Magnusson 1998-2018 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings Universitet
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Föreläsning 6: Spektralskattning: icke parametriska metoder. Leif Sörnmo 4 oktober 2009
Föreläsning 6: Spektralskattning: icke parametriska metoder Leif Sörnmo 4 oktober 2009 1 Metoder för spektralskattning icke-parametriska korrelogram, periodogram fönstring, medelvärdesbildning minimum-varians
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Fouriertransformen av diskreta signaler
Kapitel 4 Fouriertransformen av diskreta signaler I detta kapitel beskrivs Fouriertransformer av diskreta signaler. I analogi med det kontinuerliga fallet har periodiska diskreta signaler ett diskret spektrum,
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Signal- och Bildbehandling, TSBB14. Laboration 2: Sampling och Tidsdiskreta signaler
Signal- och Bildbehandling, TSBB14 Laboration 2: Sampling och Tidsdiskreta signaler Anders Gustavsson 1997, Maria Magnusson 1998-2013 Avdelningen för Datorseende, Institutionen för Systemteknik Linköpings
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Översikt Kort om projektet Vad är spektralanalys? Koppling till Transformmetoder
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen. Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT)
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Doktorand i Signalbehandling, Systemteknik (IT) Vad är spektralanalys? Analys av frekvensinnehållet i en tidsserie/signal.
AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date
AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Digital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen
Projekt Spektralanalys med hjälp av den diskreta Fouriertransformen Marcus Björk Forskare Signalbehandling Systemteknik (IT) Dept. of Information Technology, Division of f Systems and Control Översikt
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Bildförbättring i spatial domänen (kap. 3) Bildförbättring (enhancement) Spatial domän. Operatorer. Tröskling (threshold) Gråskale-transformationer
Bildförbättring i spatial domänen (kap. 3) Punktoperationer Gråskaletransformationer Logiska & aritmetiska operationer Filtrering Faltning Lågpassfilter Högpassfilter Bildförbättring (enhancement) Förbättra
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Signaler några grundbegrepp
Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett
Beskrivning av signaler i frekvensdomänen - sammanfattning
Beskrivning av signaler i frekvensdomänen - sammanfattning Bengt Carlsson Systems and Control Dept of Information Technology, Uppsala University January 21, 2010 Abstract Detta material ger en sammanfattning
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.
Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna
Övningsuppgifter. Digital Signal Processing. Övningar med svar och lösningar. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.
Övningsuppgifter Digital Signal Processing Övningar med svar och lösningar Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 17 Department of Electrical and Information Technology Lund University Introduktion
Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D
Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2019-01-10 kl. 8.00-12.00 Lokal: KÅRA Lärare: Lasse Alfredsson, tel. 013-28
Yrkeshögskolan Novia Utbildningsprogrammet i elektroteknik
Grunderna i programmeringsteknik 1. Vad är Känna till nämnda programmering, begrepp. Kunna kompilera högnivå språk, och köra program i det i kompilering, kursen använda tolkning, virtuella programmeringsspråket.
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D
Institutionen för Systemteknik 1( 8 ) Kontrollskrivning i TSDT84 Signaler & System samt Transformer för D Provkod: KTR1 Tid: 2018-10-26 kl. 14.00-18.00 Lokal: TER3, TERE Lärare: Lasse Alfredsson, tel.
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
Euler-Mac Laurins summationsformel och Bernoulliska polynom
46 Euler-Mac Laurins summationsformel och Bernoulliska polynom Lars Hörmander Lunds Universitet Datorer gör det möjligt att genomföra räkningar som tidigare varit otänkbara, exempelvis att beräkna summan
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur
UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Bildbehandling i spatialdomänen och frekvensdomänen
Digital Media Lab 2016-02-22 Tillämpad Fysik och Elektronik Ulrik Söderström Bildbehandling i spatialdomänen och frekvensdomänen Fouriertransform och filtering Del 1. Fouriertransformen 1.1. Fourieranalys
Föreläsning 1: Signaler, matriser och processer. Leif Sörnmo 28 augusti 2009
Föreläsning 1: Signaler, matriser och processer Leif Sörnmo 28 augusti 2009 1 Optimal Signalbehandling kontra Digital Signalbehandling? stokastisk modellering av signalen, metoddesign baserad på signalens
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Spektrala Transformer Övningsmaterial
Spektrala Transformer Övningsmaterial DT3 Spektrala Transformer HT 3 Innehåll Komplexa tal Sampling och kvantisering 5 3 Filter och Z-transform 6 4 Fourierserier A Svar 3 B Formelblad C Extentor med lösningar
Mer om Fourierserier. Fouriertransform LCB vt 2012
Mer om Fourierserier. Fouriertransform LCB vt 22. Exponentiella Fourierserier Vi ska i detta avsnitt se hur periodiska funktioner kan framställas i serieform med användning av den komplexa exponentialfunktionen.
x(t) = sin(ω 0 t) (1) b) Tillåt X(ω) att innehålla diracimpulser (en generalliserad funktion). Vilken signal x(t) har spektrumet X(ω)?
3 Tredje lektionen 3. Frekvensdomänen 3.. Fourier och sinus a) Varför kan vi inte transformera med den vanliga fouriertransformen? = sin(ω t) () b) Tillåt X(ω) att innehålla diracimpulser (en generalliserad
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation
Projekt 2 (P2) Problembeskrivning och uppdragsspecifikation Projekt 2 Möjligheter/Problem med 2-dimensionella mätdata Uppstart: Se planen (kursens hemsida) Etapp 1 Mätdata i 2 dimensioner behöver utredas/signalbehandlas
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.