1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
|
|
- Vilhelm Hellström
- för 8 år sedan
- Visningar:
Transkript
1 TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: Bedömning: Sex uppgifter. Varje uppgift 0- poäng. Poäng från duggor (0.5 per klarad dugga) adderas till tentamenspoäng. Betygsgränser (maximala): poäng ger betyg 3, ger betyg, >5.6 ger betyg 5. Motivera antaganden. De olika leden i lösningarna ska kunna följas. Skriv tydligt. Examinor: Nedelko Grbić Tillåtna Hjälpmedel: Formelsamling, Räknedosa. OBS: Ett klart svar måste anges. Använd gärna punkterna Givet, Sökt, Lösning och Svar. Det är både svaret och vägen fram till svaret som ska redovisas. Ange inskrivningsår i rutan för årskurs på tentamensomslaget. Skriv namn på alla inlämnade papper. Tentamensfrågor:. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h (n) = [ 3 ] h (n) = [ ] a) Bestäm den linjära faltningen av de båda sekvenserna, dvs h(n) = h (n) h (n). (0.3 p) b) Bestäm den cirkulära faltningen (modulo ) av de båda sekvenserna, dvs h(n) = h (n) h (n). (0.3 p) c) Bestäm den diskreta Fouriertransformen, H (ω), av h (n). (0. p) d) Om signalen x(n) = n, används som insignal till systemet givet av h (n), bestäm utsignalen y(n) för n. (0. p). Vi vill bestämma ett FIR-filter h(n) som specificeras i frekvensplanet av H(f) f=0 =, H(f) f= Filtret ska ha linjär fasfunktion och ha längden. a) Bestäm filtrets impulssvar h(n). (0.5 p) b) Bestäm filtrets Fouriertransform samt skissa H(f) i området f. (0.5 p) =
2 3. Nedan visas tre pol-nollställediagram samt dess impulssvar och amplitudspektra. a) Para ihop rätt impulssvar A, B, C med rätt pol-nollställediagram,,3 (0.3 p) b) Para ihop rätt amplitudspektrum I, II, III med rätt pol-nollställediagram,,3 (0.3 p) Pol-nollställediagram 3 Impulssvar A B C Amplitudspektra I II III c) Ett tidsdiskret system ges av nedanstående figur. x[n] h [n] h [n] y[n] h [n] h 3 [n] - Bestäm totala impulssvaret hn [ ] och systemfunktionen H (z) då h 0.5 z 0.5 z = 0 3 n [] n.5 u[] n, H ( z) = z, H ( z) =, h [] n = {, } (0. p).
3 . Ett LTI-system är beskrivet av nedanstående differensekvation. y(n) = 0.5y(n ) + bx(n) Bestäm parametern b så att H(ω) = vid frekvensen ω = 0, samt bestäm half-power point (dvs frekvensen, ω, för vilken H(ω) är lika med hälften av dess toppvärde). ( p) 5. Betrakta nedanstående differensekvation för ett LTI system (parametrarna a och b är två reellvärda konstanter) y(n) = ay(n ) + by(n ) + x(n) a) Ovanstående system är kaskadkopplat med två första ordningens LTIsystem, dvs resultatet blir tre system seriekopplade. Eftersom alla de tre systemen är LTI-system spelar det ingen roll i vilken ordning de är placerade. Bestäm differensekvationen av de två okända LTI-systemen så att utsignalen alltid blir densamma som insignalen, dvs de två LTI-systemen skall utjämna påverkan av ovan givna system. (0.6 p) b) Vilka villkor ställs på parametrarna a och b för att de två LTI-systemen skall ha reellvärda impulssvar? (0. p) 6. Ett annuitetslån på Kr skall betalas tillbaka med en fast månatlig summa av d kr. Räntan, accumulerad månatligen, tillkommer med 0 % per år (dvs den månatliga räntan blir 0.0/). Ställ upp en differensekvation som vid varje månad, n, beskriver lånesumman, y(n), vid varje månads slut (dvs räntan påförs vid varje månads slut sedan görs ett avdrag med d kr pga månadsinbetalningen). Bestäm den fasta månatliga betalningen, d, så att lånet blir helt avbetalat efter 30 år, samt bestäm den totala räntekostnaden, genom att lösa differensekvationen. ( p) Lycka Till!
4 SVAR Tentamen Givet h (n) och h (n)! a) Bestäm den linjära faltningen h(n) = h (n) h (n)! svar: h(n) = [ ] b) Bestäm den cirkulära faltningen (modulo ) av de båda sekvenserna, h(n) = h (n) h (n)! svar: h(n) = [ ] c) Bestäm den tids-diskreta Fouriertransformen (OBS! otydligt i uppgiften => både den tidsdiskreta FT samt den diskreta FT ger rätt svar) svar: H (ω) = n= h (n)e jωn = n= h (n)e jωn = = e jω e j0 + e jω e jω = cos(ω) e jω d) Bestäm utsignalen om insignalen är given av x(n) = n. svar: Insignalen är en DC component (dvs den har frekvensen noll), och den existerar för alla n ( n) => y(n) = H (0) H (0) = cos(0) + e j0 = = 0 => y(n) = 0, n => y(n) = 0, n. Vi vill bestämma ett FIR-filter, h(n), av längd som specificeras i frekvensplanet av (OBS avsikten i tentan skall vara belopp i andra kravet => både med och utan belopp ger fullt poäng) H(f) f=0 =, H(f) f= a) Bestäm filtrets impulssvar svar: filtret skall vara symmetriskt (pga linjär-fas kravet), dvs det skall ha formen av h(n) = [ b 0 b b b 0 ] = 3
5 Fouriertransformen blir, H(f) = b 0 + b e jπf + b e jπf + b 0 e j6πf = = (b 0 cos( 3 πf) + b cos( ) πf) e j 3 πf () Kraven i de två punkterna, f = 0, samt f = / ger f = 0 : (b 0 + b ) = f = : b 0 cos( 3 π ) +b cos( }{{} π ) }{{} / / = => [b 0 b ] = [0.073, 0.7] dvs, h(n) = [ b 0 b b b 0 ] = [ ] b) Bestäm filtrets Fouriertransform samt skissa H(f) i området f svar: Fouriertransformen är given i Ekv. () i uppg. a), H(f) Amplitudspektra Normaliserad frekvens H(f) Amplitudspektra Normaliserad frekvens Figure : Magnitudspektrum av linjär-fas filteret i uppg b. Övre figur om beloppet av andra kravet används, nedre figur om beloppet inte används. Båda ger rätt svar. 3. Givet tre pol-nollställediagram samt dess impulssvar och amplitudspektra. a) Para ihop rätt impulssvar A, B, C med rätt pol-nollställediagram,, 3! svar: A- (ty komplexkonjugerade poler=alternerande sekvens), B- (ty FIR filter), C-3 (avtagande då reella poler) b) Para ihop rätt ampliyudspektrum I, II, III med rätt pol-nollställediagram
6 ,, 3! svar: I- (poler. vid f=/), II-3 (poler vid f=0 samt f= / ger högre värden än III), III- (jfr värdena i II) c) Givet ett tidsdiskret system, bestäm det totala impulssvaret samt systemfunktionen. svar: H tot (z) = (H (z) H (z) H 3 (z)) H (z) där H (z) = 0.5z H (z) = z H 3 (z) = 0.5z 0.5z H (z) = z => H tot (z) = = ( 0.5z z 0.5z 0.5z ( 0.5z 0.5z ) ( z ) = ) ( z ) = z ( 0.5z ) 0.5z = z Invers Z-transform ger h tot (n) = δ(n ). Givet ett LTI-system y(n) = 0.5y(n ) + bx(n) a) Bestäm b så att H(ω) = vid frekvensen ω = 0. svar: Z-transformera differensekvationen ger, Y (z) = 0.5z Y (z) + bx(z) Y (z)( 0.5z ) = bx(z) Y (z) = b ( 0.5z ) X(z) => H(z) = b ( 0.5z ) Ur H(z) fås Fouriertransformen genom b H(ω) = H(z) z=e jω = ( 0.5e jω ) b => H(0) = ( 0.5) => b = () 5
7 b) Bestäm ω för vilken H(ω) är lika med hälften av dess toppvärd. svar: Toppvärdet fås då Ekv () har sitt största värde, dvs när nämnaren har sitt minsta värde. Detta sker då nämnaren blir 0.5 och toppvärdet blir (anv. b = 0.5), dvs H(ω) = ( 0.5cos(ω)) }{{} + (0.5sin(ω)) }{{} real imag => (.5 cos(ω)) = Mulitiplicera båda sidor med, samt invertera båda sidor,.5 cos(ω) = => cos(ω) = => ω = acos(.5 0.5) Vi har givet ett andra ordningens LTI-system H(z) enligt y(n) = ay(n ) + by(n ) + x(n) a) Bestäm två första ordningens LTI-system så att y(n) = x(n), dvs lös följande system i Z-domän Y (z) = H(z) H (z) H (z) X(z) }{{} = Genom att Z-transformera den givna differensekvationen fås; H(z) = az bz Poler till ovanstående system fås genom att lösa nedanstående (multiplicera nämnare och täljare med z ), z az b = 0 => p = a ± a + b Genom att lägga nollställen n i samma punkter som de två polerna uppfylls kravet, dvs n = p och n = p, (efter insvängningsförlopp) H tot (z) = ( n z )( n z ) ( p z )( p z ) = 6
8 dvs de två differensekvationerna blir y (n) = x(n) n x(n ) y (n) = x(n) n x(n ) och n = a a ± + b b) Villkoren på parametrarna a och b för att få reellvärda impulssvar är att rötterna p är reellvärda, dvs a + b 0 => a b => b a 6. Ett annuitetslån på Kr skall betalas tillbaka med en fast månatlig summa av d kr. Räntan, accumulerad månatligen, tillkommer med 0 % per år (dvs den månatliga räntan blir 0.0/). Ställ upp en differensekvation som vid varje månad, n, beskriver lånesumman, y(n), vid varje månads slut (dvs räntan påförs vid varje månads slut sedan görs ett avdrag med d kr pga månadsinbetalningen). Bestäm den fasta månatliga betalningen, d, så att lånet blir helt avbetalat efter 30 år, samt bestäm den totala räntekostnaden, genom att lösa differensekvationen. svar: Vi definierar y(n) som lånesumman för varje månad n (med första månaden n=0), dvs lånesumman är lika med föregående lånesumma y(n ) plus (månadens ränta) x (föregående lånesumma), 0.0/ y(n ) minus betalningen i den aktuella månaden, dvs vi får följande differensekvation med ett begynnelsevärde; y(n) = ( + 0.0/) y(n ) + x(n) där x(n) = d u(n), y( ) = Vi använder den enkelsidiga Z + -transformen, och definierar a = (+0.0/), vilket ger, Y + (z) a ( z Y + (z) + y( ) ) = X(z) => Y + (z)( az ) ay( ) = X(z) => Y + (z) = ( az ) X(z) + a ( az ) y( ) Vi använder den vanliga Z-transformen av x(n) (ty den är kausal) dvs, Y + (z) = d ( z )( az ) + ay( ) ( az ) 7
9 Genom partialbråksuppdelning får vi Y + (z) = A ( az ) + B ( z ) + ay( ) ( az ) där d A = /a = d a a B = d a Inverstransformering ger lösningen av diff. ekvationen (A och B enl. ovan), y(n) = Aa n u(n) + Bu(n) + y( )a n+ u(n) (3) Bestäm den månatliga betalningen d så att lånet blir helt avbetalt efter 30 år = 360 månader, dvs Insättning av värden ger, y(360) = Aa B a 36 0 d ( a a 360 ) = 0 5 a 36 => a d = 05 a 36 ( a) 877 (a 36 ) Den totala räntekostnaden blir den totala inbetalningen minus den ursprungliga lånesumman d kr. 0 x 0 Utveckling lånesumma d = 877 SEK 8 Lånesumma [kr] Månad [n] Figure : Utveckling av lånesumman, y(n) ur Ekv. (3), under 30 år, dvs 360 månader, d 877 Kr. 8
10 Kuriosa 0 x 0 Utveckling lånesumma vid rak amortering Lånesumma [kr] 8 6 Månatlig betalning [kr] Månad [n] Månatlig betalning vid rak amortering; Tot Räntekostnad = 507 Kr Månad [n] Figure 3: Utveckling av samma lån vid rak amortering med samma lånesats och samma räntesats (övre fig), samt den månatliga betalningen vid rak amortering (nedre fig). Total räntekostnad = 50 7 Kr. 9
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merLUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Läs mer0 1 2 ], x 2 (n) = [ 1
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- SIGNALBEHANDLING I MULTIMEDIA, ETI Tid: 8.-3. Sal: Vic - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling och
Läs merTentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Läs merDT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merTentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Läs merMiniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
Läs merSystem. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
Läs merLUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Läs merTentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Läs merSpektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Läs merSF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
Läs merTIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Läs merLUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 6-6- SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 8.-3. Sal: Vic, - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Läs merMiniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 08-05-3 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Vic A Hjälpmedel: Viktigt: Miniräknare och en valfri
Läs merMiniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator, Signal Processing tables of formulas.]
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- DIGITAL SIGNALBEHANDLING, EITF7/ESS Tid: 8.-3. Sal: MA8 - Hela Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
Läs merSF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Läs merImpulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Läs merÖvningsuppgifter. Digital Signal Processing. Övningar med svar och lösningar. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.
Övningsuppgifter Digital Signal Processing Övningar med svar och lösningar Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 17 Department of Electrical and Information Technology Lund University Introduktion
Läs merResttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Läs merRÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Läs merMiniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-8 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: MA:9 A-D Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merMiniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
Läs merLUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 04-05-7 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 4.00 9.00 Sal: MA:0 Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2006-05-3 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9.40. tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merTentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00
Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna
Läs merDIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merDT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Läs merTentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Läs merMiniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 6--7 DIGITAL SIGNALBEHANDLING, ESS Tid:. 9. Sal: MA 8 Hjälpmedel: Miniräknare och formelsamling i signalbehandling. [Allowed items
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Läs merDiskreta signaler och system
Kapitel 7 Diskreta signaler och system I detta kapitel diskuteras grundläggande teori för diskreta signaler och system. För diskreta signaler introduceras z-transformen, som ligger som grund för representationen
Läs merTSDT15 Signaler och System
TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys
Läs merDT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Läs merKryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
Läs merLösningar till Övningsuppgifter
Lösningar till Övningsuppgifter Digital Signal Processing Övningar med svar och lösningar Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 07 Department of Electrical and Information Technology Lund
Läs merSignal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merSignal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merFÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Läs merSignal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB4 Tid: 2-8-7 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 5.5 och 6.45 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Läs merÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Läs merExempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Läs mer( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före
Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare
Läs merTentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07
Tentamen i Elektronik, ESS00, del 4,5hp den 9 oktober 007 klockan 8:00 :00 För de som är inskrivna hösten 007, E07 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00,
Läs meri(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)
2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 00-05-8 kl. -8 Lokaler: G, G Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 5 och 7. tel Hjälpmedel: Räknedosa, OH-film, medskickad formelsamling
Läs mer2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA Tid: -- kl. - Lokaler: G3 Ansvarig lärare: Henrik Turbell besöker lokalen kl..3 tel Adm. assistent: Ylva Jernling tel Hjälpmedel: Räknedosa, OH-film, medskickad
Läs merSYSTEM. Tillämpad Fysik Och Elektronik 1 SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System.
SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET SYSTEMEGENSKAPER System y(t) y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET
Läs merKan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Läs merLaplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Läs merTentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i eglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 20-06-09 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
Läs merTSDT08 Signaler och System I Extra uppgifter
TSDT08 Signaler och System I Extra uppgifter Erik G. Larsson ISY/Kommunikationssystem december, 2008 P. Ett LTI system har impulssvaret och matas med insignalen ht) = e 2t ut) xt) = e 3t ut) + cosπt +
Läs merFacit till Signal- och bildbehandling TSBB
Facit till Signal- och bildbehandling TSBB3 6-5-3 Maria Magnusson Seger, maria@isy.liu.se Kontinuerlig faltning (9p) a) Faltningsoperationen illustreras i figuren nedan. et gäller att x(t λ) e 4(t λ) u(t
Läs merFörsättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
Läs merKompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem
ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs mer2 Ortogonala signaler. Fourierserier. Enkla filter.
Ortogonala signaler. Fourierserier. Enkla filter. ktuella ekvationer: Se formelsamlingen och förberedelsehäftet. För effektivvärdet av en summa av N ortogonala signaler gäller: ν rms = ν rms1 + ν rms +...
Läs merLaboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Läs merReglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )
Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
Läs merImplementering av digitala filter
Kapitel 9 Implementering av digitala filter Som vi sett i kapitel 8 kan det behövas ett mycket stort antal koefficienter för att representera ett digitalt filter. Detta gäller i synnerhet FIR filter. Det
Läs merTentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,
Läs merTentamen i Elektronik, ESS010, del 1 den 18 oktober, 2010, kl
Institutionen för Elektro och informationsteknik, LTH Tentamen i Elektronik, ESS00, del den 8 oktober, 00, kl. 08.00.00 Ansvariga lärare: Anders Karlsson, tel. 40 89, 07 98 (kursexp. 90 0). arje uppgift
Läs merSignal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:
Läs merKompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Läs merTillämpad Fysik Och Elektronik 1
FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK
Läs merTentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
Läs merTentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
Läs merTentamen i matematik. f(x) = 1 + e x.
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 202-03-23 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs mer62n 105n) c) cos(3πn) d) sin(3n) e) sin(π. 1.8 Ett analogt elektrokardiogram (EKG) innehåller frekvenser upp till 100 Hz.
Kapitel Övningsuppgifter. Bestäm vilka av följande signaler som är periodiska och bestäm periodtiden. a) cos(.πn) b) cos(π 3 6n 5n) c) cos(3πn) d) sin(3n) e) sin(π )..5 Den analoga signalen x a (t) är
Läs merReglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Läs merFouriermetoder MVE295 - bonusuppgifter
Fouriermetoder MVE295 - bonusuppgifter Edvin Listo Zec 920625-2976 edvinli@student.chalmers.se Sofia Toivonen 910917-4566 sofiato@student.chalmers.se Emma Ekberg 930729-0867 emmaek@student.chalmers.se
Läs merDigital Signalbehandling
Digital Signalbehandling Institutionen för Elektro- och informationsteknik Övningar och lösningar Proakis bok (upplaga 4) Nedelko Grbić Lund 4 Innehåll Övningsuppgifter 5 Lösningar till övningsuppgifter
Läs merGRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Läs merLösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.
Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.
Läs mer1. (a) Lös ekvationen (2p) ln(x) ln(x 3 ) = ln(x 6 ). (b) Lös olikheten. x 3 + x 2 + x 1 x 1
Högskolan i Halmstad Tentamensskrivning 6 hp ITE/MPE-lab MA2047 Algebra och diskret matematik Mikael Hindgren Onsdagen den 26 oktober 2016 035-167220 Skrivtid: 9.00-13.00 Inga hjälpmedel. Fyll i omslaget
Läs merTENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
Läs merTSRT91 Reglerteknik: Föreläsning 5
TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Läs merTENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.
Läs merVad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden
Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen
Läs merRita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),
Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan
Läs mer= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.
Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att
Läs merBestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2
7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm
Läs merSpektrala Transformer
Spektrala Transformer Fouriertransformer Fourier Gif mig en wågform och jag skola skrifva den som en summa af sinuswågor! Jean-Baptiste Fourier 1768-1830 Fouriertransformen Transformerar kontinuerliga
Läs merREGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Läs merTENTAMEN I REGLERTEKNIK Y/D
TENTAMEN I REGLERTEKNIK Y/D SAL: TER1, TER2, TER3 TID: 15 mars 2017, klockan 8-13 KURS: TSRT12, Reglerteknik Y/D PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD):
Läs merTentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic
Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:
Läs mer