LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
|
|
- Britt-Marie Hansson
- för 7 år sedan
- Visningar:
Transkript
1 LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj i kursens fack (ETI65) på vån i E-huset. [Complete the task within a week and put it in the course mailbox at the third floor.] Observandum: För att underlätta rättningen: [In order to simplify the correction:] -Lös endast en uppgift per blad. [Only solve one problem per paper sheet.] -Skriv namn på samtliga blad. [Please write your name on every paper sheet.] Påståenden måste motiveras via resonemang och/eller ekvationer. [Statements must be motivated by reasoning and/or equations.] Poäng från inlämningsuppgifterna adderas till tentamensresultatet. [The points from the tasks will be added to the examination score.] Max Tot. poäng (tentamen + båda inl.uppg) = = 6. [Max Tot. score (exam + tasks) = = 6. ] Betygsgränser för kursen: (.p), (.p), 5 ( 5.p). [Grading; (.p), (.p), 5 ( 5.p).]. Ange vilka av nedanstående påståenden som är korrekta respektive felaktiga! [Indicate which of the following statements are correct and which are false.] ( rätt av 6 ger. poäng) [( correct answers out of 6 gives.p)] a) Ett kausalt FIR-filter har alltid fler poler än nollställen! [A causal FIR-filter has always more poles than zeros!] b) Icke-rekursiva system har alla poler i origo! [Non-Recursive systems has all poles in the point of origin!] c) Rekursiva system kan inte vara stabila! [Recursive systems cannot be stable!] d) Ett LTI-system kan inte vara ett linjär fas -system! [An LTI-system cannot have a linear-phase function!] e) Ett FIR-filter kan inte vara ett linjär fas -system! [An FIR-filter cannot have a linear-phase function!] f) Ett IIR-filter kan inte vara ett linjär fas -system! [An IIR-filter cannot have a linear-phase function!]
2 . En tidsdiskret krets beskrivs av differensekvationen, [A discrete-time system is described by the following difference-equation,] y(n) y(n ) + y(n ) = x(n) + x(n ) 8 a) Rita pol-nollställesdiagram och bestäm systemfunktionen H(z) samt impulssvaret h(n) för kretsen. Avgör om systemet är stabilt! (.p) [Draw the corresponding pole-zero diagram and determine the systemfunction H(z) together with the impuls response, h(n). Determine if the system is stable!] b) Antag att följande signal bildar insignal till systemet, [The following signal constitutes the input signal,] ( ) n x(n) = u(n ) där u(n) är stegfunktionen. Lös differensekvationen genom att använda Z-transformen, dvs bestäm ett slutet uttryck för utsignalen y(n), då systemet är i vila, dvs y( ) = y( ) =. (.p) [where u(n) is the step function. Solve the difference equation by using the Z-transform, i.e. determine a closed form expression for y(n) when the system is at rest, equivalent to y( ) = y( ) =.]. I figur - nedan visas fyra pol-nollställediagram samt dess magnitudspektra och fasspektra. (OBS! Det ingår i uppgiften att förstå vilken storhet på x- resp y-axlarna som avses i Fig. och.) [In figure - below it is shown four pole-zero plots, the amplitude and phase spectra. (OBS! It is part of the task to understand what are the units on the x- and y-axes in figures and.)] a) Para ihop rätt pol-nollställediagram A,B,C,D med rätt magnitudspektrum,,,! (.p) [Pair the pole-zero plots (A-D) with the corresponding amplitude spectra (-)!] b) Para ihop rätt pol-nollställediagram A,B,C,D med rätt fasspektrum I, II, III, IV. (.p) [Pair the pole-zero plots (A-D) with the corresponding phase spectra (I-IV)!] Lycka till!
3 A B C.5.5 D Figure : Pol-nollställediagram A,B,C,D i uppgift Figure : Magnitudspektrum,,, i uppgift.
4 .5 I II III.5 IV Figure : Fasspektrum I, II, III, IV i uppgift.
5 SVAR OCH LÖSNINGAR Inlämningsuppgift, EIT65, VT 5 SVAR. a) Falskt, då ett kausalt FIR filter även kan ha lika många poler som nollställen. b) Korrekt, nämnarpolynomet har bara en term, z ±k, där k är en heltalskonstant. c) Falskt, ett rekursivt system (IIR) är stabilt om alla poler är innanför enhetscirkel d) Falskt, ett symmetriskt (eller antisymmetriskt) impulssvar h(n) ger ett linjär fas -system. e) Falskt, p.s.s som ovan. f) Korrekt, då ett IIR filter bara kan vara ett noll-fas system (icke kausalt) eller icke-linjär fas-system (kausalt). OBS! En fasfunktion som är lika med noll, anses generellt vara en linjär funktion och då kan man säga att påståendet är Falskt. DVS, båda svaren ger rätt om motiveringen är rätt. SVAR a. Z-transformera differens-ekvationen, det ger H(z) får enligt, Y (z)( z + 8 z ) = X(z)( + z ) H(z) = Y (z) X(z) = + z z + 8 z Börja med att par- Genom att invers-transformera H(Z) fås impulssvaret h(n). tialbråksuppdela H(z), dvs bestäm polerna ur, H(z) = z z + z z + 8 z = z(z + ) z z + 8 dvs z = 8 ± => p =, p = H(z) = A z + B z Identifiering (eller handpåläggningsmetoden) ger A =, B = 9 dvs impulssvaret ges av invers Z-transform enligt h(n) = (( )n 9( ) )n u(n) Polerna är p =, p =, dvs systemet är stabilt (poler innanför enhetscirkeln) och nollställena ges av rötter till täljaren i H(z), enligt z(z + ) = => n =, n = 5
6 SVAR b. I Z-domän ges utsignalen av Y (z) = H(z)X(z). Bestäm X(z) genom definitionen av Z-transformen X(z) = n= x(n)z n = n= Inför variabelbytet n = n dvs n = n + vilket ger, X(z) = Det ger att Y (z) blir n = = z z ( )n u(n )z n ( + )n u(n )z (n +) = z ( )n z n n = SVAR. A--I B--III C--II D--IV Y (z) = ( + z ) z ( z )( z )( z ) = ( ) A z + B z + C z z Identifiering (eller handpåläggning) ger A =, B = 7 och C = 56. dvs z Y (z) = + 9 z 56 z z z z och utsignalen (dvs lösningen på diff. ekv.) blir ( y(n) = ( )n + 9( )n 56 ) ( )n u(n ) 6
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 6-6- SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 8.-3. Sal: Vic, - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 6--7 DIGITAL SIGNALBEHANDLING, ESS Tid:. 9. Sal: MA 8 Hjälpmedel: Miniräknare och formelsamling i signalbehandling. [Allowed items
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 08-05-3 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Vic A Hjälpmedel: Viktigt: Miniräknare och en valfri
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
0 1 2 ], x 2 (n) = [ 1
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- SIGNALBEHANDLING I MULTIMEDIA, ETI Tid: 8.-3. Sal: Vic - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling och
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 04-05-7 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 4.00 9.00 Sal: MA:0 Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Miniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator, Signal Processing tables of formulas.]
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- DIGITAL SIGNALBEHANDLING, EITF7/ESS Tid: 8.-3. Sal: MA8 - Hela Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 18 Inlämningsuppgift 2 av 2, Assignment 2 out of 2 Inlämningstid: Lämnas in senast
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-8 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: MA:9 A-D Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
System. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
TSDT15 Signaler och System
TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
6. a) Visa att följande vektorer är egenvektorer till matrisen A = 0 2 0 0 0 0 1 1, och ange motsvarande
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA5 Vektoralgebra TEN2 Datum: juni 25 Skrivtid: 3
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
Tables, calculator, the textbook by Mitra. Solutions manual or lecture notes are not allowed.
LUND INSTITUTE OF TECHNOLOGY Dept. of Electroscience Exam in DIGITAL SIGNAL PROCESSING IN AUDIO/VIDEO (ETI270) 2003-05-27 Hours: 4.00 9.00 Room: MA9B-D Aid Observandum Tables, calculator, the textbook
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
Diskreta signaler och system
Kapitel 7 Diskreta signaler och system I detta kapitel diskuteras grundläggande teori för diskreta signaler och system. För diskreta signaler introduceras z-transformen, som ligger som grund för representationen
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
SYSTEM. Tillämpad Fysik Och Elektronik 1 SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System.
SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET SYSTEMEGENSKAPER System y(t) y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET
Implementering av digitala filter
Kapitel 9 Implementering av digitala filter Som vi sett i kapitel 8 kan det behövas ett mycket stort antal koefficienter för att representera ett digitalt filter. Detta gäller i synnerhet FIR filter. Det
SF1635, Signaler och system I
SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före
Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet?
Kan vi beskriva ett system utan någon fysikalisk kännedom om systemet? 1 Om svaret på frågan är ja så öppnar sig möjligheten att skapa en generell verktygslåda som fungerar för analys och manipulering
Föreläsning 1 Reglerteknik AK
Föreläsning 1 Reglerteknik AK c Bo Wahlberg Avdelningen för Reglerteknik, KTH 29 augusti, 2016 2 Introduktion Example (Temperaturreglering) Hur reglerar vi temperaturen i ett hus? u Modell: Betrakta en
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB3 Tid: 28-5-29 kl. 8-2 Lokal: TER2 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och.4 tel 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 212-1-29 Kryssproblem (redovisningsuppgifter). Till var och en av de tio lektionerna hör två problem som du ska
1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-02-15
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 15-18, 30/11-12/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp ES, gyl, Q, W 0-0-9 Sammanfattning av föreläsningarna 5-8, 30/ - / 0. Z-transformen ska avslutas och sedan blir det tentaförberedelser.
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 14-6-5 Sal (1) KÅRA T1 & T (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,
Exercises Matlab/simulink V
817/Thomas Munther IDE-sektionen Exercises Matlab/simulink V MA-filter ( Moving Average ) Detta är ju egentligen inget annat än ett FIR-filter fast där vi använder samma vikter på alla insignaltermer och
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
TENTAMEN: DEL B Reglerteknik I 5hp
TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 8 mars 0, kl. 4.00-9.00 Plats: Gimogatan 4 sal Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 5.30 och kl 7.30.
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-08-22 kl. 4-8 Lokaler: G36 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 6.00. tel 0702/33 79 48 Hjälpmedel: Räknedosa, OH-film, medskickad
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00 Svaren skall vara läsligt skrivna och så uppställda att lösningen går att följa. När du börjar på en ny uppgift - tag
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: 205-0-, 8-3 Lokaler: U, U3, U Ansvarig lärare: Maria Magnusson besöker lokalerna kl. 9.30 och.30 tel 073-80 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION 120607 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition En ordbok: studentenshemspråk engelska Betygsgräns:
TENTAMEN I TSRT19 REGLERTEKNIK
SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER
Försättsblad till skriftlig tentamen vid Linköpings universitet KÅRA T1 T2 U2 U4
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2016-10-28 Sal (5) KÅRA T1 T2 U2 U4 Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Grundläggande
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Tentamen i Styr- och Reglerteknik, för U3 och EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 2 december kl. 9-13, 29 Sal: R1122 Tillåtna hjälpmedel:
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING
övningstentamen I DYNAMISKA SYSTEM OCH REGLERING SAL: - TID: mars 27, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 73-9699 BESÖKER SALEN:
1. Förpackningsmaskin / Packaging machine
1. örpackningsmaskin / Packaging machine venska: En förpackningsmaskin ser ut enligt nedanstående skiss. Den inkommande tuben matas fram med motorn. otorn går så länge som dess styrsignal är sann. Om tuben
Optimal Signalbehandling Datorövning 1 och 2
Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information
Övningsuppgifter. Digital Signal Processing. Övningar med svar och lösningar. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev.
Övningsuppgifter Digital Signal Processing Övningar med svar och lösningar Mikael Swartling Nedelko Grbic Bengt Mandersson rev. 17 Department of Electrical and Information Technology Lund University Introduktion
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Signal- och bildbehandling TSBB14
Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Signal- och bildbehandling TSBB03, TSBB14
Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,
Försättsblad till skriftlig tentamen vid Linköpings universitet G33(1) TER4(63)
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 2017-01-07 Sal (2) G33(1) TER4(63) Tid 8-12 Kurskod TSBB16 Provkod TEN2 Kursnamn/benämning Provnamn/benämning Institution
TENTAMEN I REGLERTEKNIK
TENTAMEN I REGLERTEKNIK TID: 29-6-4, kl 4.-9. KURS: TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, tel 7-339 BESÖKER SALEN: 5., 7.3 KURSADMINISTRATÖR: Ninna Stensgård,
Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.
Technique and expression 3: weave 3.5 hp Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2 ExamCode: February 15 th 9-13 Means of assistance: Calculator, colorpencils,
SF1635, Signaler och system I
SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 5--6 Sal () TER E, TER, TER (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken
Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180)
Göteborgs Universitet och Chalmers Tekniska Högskola 25 oktober 2005 Datavetenskap TDA180/TDA181/INN110 Tentamen i kurserna Beräkningsmodeller (TDA181/INN110) och Grundläggande Datalogi (TDA180) Onsdagen
TENTAMEN Reglerteknik 3p, X3
OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med
Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp
KTH-ICT-ES Tentamen i Reglerteknik. 7,5 hp varav tentamen ger 4,5 hp Kurskod: IE304 Datum: 0-03-4 Tid: 9.00-3.00 Examinatorer: Jan Andersson och Leif Lindbäck Tentamensinformation: Hjälpmedel: Bilagd formelsamling,
and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix
Umeå University Exam in mathematics Department of Mathematics Linear algebra and Mathematical Statistics 2012-02-24 Gerold Jäger 9:00-15:00 T ( ) 1 1 2 5 4 1. Compute the following matrix 7 8 (2 p) 2 3
Signal- och bildbehandling TSEA70
Tentamen i Signal- och bildbehandling TSEA70 Tid: 000-03-8 kl. 4-8 Lokaler: Garnisonen Ansvariga lärare: Olle Seger, Maria M Seger besöker lokalerna kl 500 och 700 tel 070/33 79 48 Hjälpmedel: Räknedosa,
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en