Tables, calculator, the textbook by Mitra. Solutions manual or lecture notes are not allowed.
|
|
- Jonas Åström
- för 9 år sedan
- Visningar:
Transkript
1 LUND INSTITUTE OF TECHNOLOGY Dept. of Electroscience Exam in DIGITAL SIGNAL PROCESSING IN AUDIO/VIDEO (ETI270) Hours: Room: MA9B-D Aid Observandum Tables, calculator, the textbook by Mitra. Solutions manual or lecture notes are not allowed. To simplify correction, please: include only one solution per page, write your name on all pages, motivate statements by proper reasoning, equations, or reference(s) to the textbook. Grades (required minimum points): 3 (3.0), 4 (4.0), 5 (5.0).. Provide brief answers to the following questions: a) Why is the DCT used instead of the DFT in JPEG compression? (0.) b) What does frequency masking mean within psychoacoustics? (0.) c) What does perfect reconstruction mean for a filter bank? (0.) d) What does Signal-to-Mask ratio mean in music compression and how is it used to reduce the bit rate? (0.) e) Explain how JPEG compresses an image by using basis functions and weights. (0.2) f) Explain how a filter bank can transform a sequence of 384 samples into 32 sequences, each with 2 samples, without loss of information. (0.2) g) When and why is it acceptable to change positions of an upsampler and a downsampler (no proof is needed)? (0.2) 2. a) Upsample and downsample each of the three spectra shown in Figure by a factor of two and present the result graphically. (0.6) b) For downsampling, in which case(s) is lowpass filtering needed to avoid aliasing? (0.4) 3. Derive the two band polyphase decomposition of the following IIR filter H(z) = z +.5z z + 0.8z 2
2 2/3 /3 /3 2/3 /2 /2 Figur : Problem 2 and sketch the corresponding block diagram. 4. The input signal to a filter has quantization noise with variance one. Determine the noise variance of the output signal when the input signal is fed through the IIR filter: H(z) = z2.9z +.2 z 2 0.3z a) Determine the analog frequency response G(Ω) for a third order Butterworth filter with the cut-off frequency Ω c = rad/s. (0.3) b) Determine the corresponding digital filter, H 0 (z), by using the bilinear transformation. (0.3) c) Rewrite the filter on the form H 0 (z) = 2 (A 0(z 2 ) + z A (z 2 )) where A 0 (z) and A (z) are stable allpass filters. (0.2) d) Show by means of a block diagram how H 0 (z) can be implemented by using one single multiplier. (0.2) 6. a) Determine the two transfer functions for the system in Figure 2 which relate the two output signals to the input signals. (0.7) 2
3 b) What is the over-all purpose of this particular system? (0.2) c) Is the system time-invariant? (0.) Figur 2: Problem 6 Good Luck!! 3
4 LUNDS TEKNISKA HÖGSKOLA Inst. för Elektrovetenskap Lösningar till tentamen i DIGITAL SIGNALBEHANDLING I AUDIO/VIDEO (ETT270) Tid: Sal: MA9B-D Hjälpmedel Observandum Räkne och transformtabeller, formelsamlingar, räknedosa, kursboken (Mitra). Dock inga skrivna lösningar till övningsuppgifter eller föreläsningsanteckningar. För att underlätta rättningen: -Lös endast en uppgift per blad. -Skriv namn på samtliga blad. Påståenden måste motiveras via resonemang, ekvationer eller lämplig referens till boken. Betygsgränser: 3 (2.0p), 4 (3.0p), 5 (4.0p).. a) DCT basfunktionerna är mjukare för ögat dvs det behövs färre basfunktioner jämfört med DFT för att det ska se hyfsat bra ut. (0.) b) Att frekvenser i närheten av en stark ton maskeras bort dvs inte kan höras. (0.) c) Att filterbanken inte ger amplitud- och fasdistorsion utan har samma fördröjning och förstärkning för alla frekvenser? (0.) d) Hög maskeringsnivå dvs lågt SMR betyder att få bitar ska placeras där eftersom kvantiseringsbruset ändå inte hörs. (0.) e) Ett 8x8 block projiceras på 8x8 olika basfunktioner (bilder). Var och en av dessa bilder får därmed en vikt. Det är dessa vikter som skickas över i JPEG. Kompression åstadkoms bl a genom att bara vikterna för de viktigaste basfunktionerna skickas med. (0.2) f) Varje subband viks vid nedsampling till basbandet (lågpass). (0.2) g) När dessa inte har några gemensamma nämnare (M and L mutually prime)? (0.2) 2. Vikning i och 2 och därför behövs lågpassfiltrering där. Se figur. 3. Följande överföringsfunktion är given H 0 (z) = z +.5z z + 0.8z 2
5 Uppsampling Nersampling vikning (*2) vikning (*2) 2/3 /3 /3 2/3 2/3 /3 /3 2/3 /2 /2 /2 /2 /2 vilket ger att Då blir Figur : Problem 2 H (z) = H 0 ( z) = 2 3.z +.5z 2 0.9z + 0.8z 2 E 0 (z 2 ) = 2 [H (z) + H ( z)] = z z z z 4 och z E (z 2 ) = 2 [H (z) H ( z)] = 2.6z z z z 4 vilket slutligen ger oss den tvåbandiga polyfas uppdelningen av H (z) som ( ) ( z z 4 H 0 (z) = + z z z z z z 4 4. a) Enligt ekvationerna 5.34 och 5.35 i boken så blir en tredje ordningens lågpass Butterworth överföringsfunktion enligt där H a (s) = (s p )(s p 2 )(s p 3 ) p = e j2/3 p 2 = e j = p 3 = e j4/3 = e j2/3 2 )
6 vilket ger H a (s) = b) Med den bilinjära transformen så får vi (s + )(s 2 + s + ) (0.3) H 0 (z) = H a (s) s= z z+ = (z + ) 3 (z + z + ) ((z ) 2 + (z 2 ) + (z + ) 2 ) (z + )3 = 2z(3z 2 + ) = ( + z ) 3 = + 3z + 3z 2 + z 3 = 6 + 2z z 2 2 = ( A0 (z 2 ) + z A (z 2 ) ) 2 ( + 3z 2 + z 3 + z 2 ) c) Vi kan nu bestämma H (z) som A 0 (z) = + 3z 3 + z A (z) = H (z) = H 0 ( z) = ( z ) z 2 (0.3). (0.2) d) En realisering, med en multiplikator, av QMF banken enl lösn till (0.2) 5. För att beräkna output noise variance, σv 2, så antar vi att σ2 e = (dvs vi beräknar normalized output noise variance: σv,n 2 ). Filtret som vi ska beräkna σv,n 2 för är H(z) = z2.9z +.2.6z = + z 2 0.3z z 2 0.3z För att beräkna σ 2 v,n så använder vi ekvation 9.84 och tabell 9.4 (där alla värden för ekvation 9.88 är beräknade) i boken. Då får vi σ 2 v,n = + ( )( ) (.6) ( 0.3) ( 0.9) ( ) ( ) = = a) Med u[n] och v[n] enligt figur så blir U(z) = X (z 2 ) + z X 2 (z 2 ) 3
7 u[n] v[n] Figur 2: Problem 6 g[n] och V (z) = H(z 2 )U(z) G(z) = z V (z) Detta ger Y (z) = 2 Y 2 (z) = 2 k=0 V (z /2 W k 2 ) = 2 [V (z/2 ) + V ( z /2 )] = 2 [H(z)U(z/2 ) + H(z)U( z /2 )] = 2 [H(z)(X (z) + z /2 X 2 (z)) + H(z)(X (z) z /2 X 2 (z))] = H(z)X (z) k=0 G(z /2 W k 2 ) = 2 [G(z/2 ) + G( z /2 )] = 2 [z /2 V (z /2 ) z /2 V ( z /2 )] = 2 [z /2 H(z)U(z /2 ) z /2 H(z)U( z /2 )] = 2 [H(z)(z /2 X (z) + z X 2 (z)) H(z)(z /2 X (z) z X 2 (z))] = H(z)z X 2 (z) b) Med den här metoden kan man skicka två separata datamängder över samma kanal H(z) samtidigt. Man skickar dubbelt så snabbt som samplingsfrekvensen och skickar varannat värde från vardera signalen. c) Ja, förskjuts insignalen ett sampel så sker samma med utsignalen. Uppoch nersamplarna är tidsinvarianta. 4
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 08-05-3 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Vic A Hjälpmedel: Viktigt: Miniräknare och en valfri
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 6-6- SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 8.-3. Sal: Vic, - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 6--7 DIGITAL SIGNALBEHANDLING, ESS Tid:. 9. Sal: MA 8 Hjälpmedel: Miniräknare och formelsamling i signalbehandling. [Allowed items
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling
0 1 2 ], x 2 (n) = [ 1
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- SIGNALBEHANDLING I MULTIMEDIA, ETI Tid: 8.-3. Sal: Vic - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling och
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator, Signal Processing tables of formulas.]
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 7-- DIGITAL SIGNALBEHANDLING, EITF7/ESS Tid: 8.-3. Sal: MA8 - Hela Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
Miniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 04-05-7 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 4.00 9.00 Sal: MA:0 Hjälpmedel: Miniräknare, formelsamling i signalbehandling
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 18 Inlämningsuppgift 2 av 2, Assignment 2 out of 2 Inlämningstid: Lämnas in senast
Tentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
6. a) Visa att följande vektorer är egenvektorer till matrisen A = 0 2 0 0 0 0 1 1, och ange motsvarande
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA5 Vektoralgebra TEN2 Datum: juni 25 Skrivtid: 3
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Examples on Analog Transmission
Examples on Analog Transmission Figure 5.25 Types of analog-to-analog modulation Figure 5.26 Amplitude modulation Figure 5.29 Frequency modulation Modulation och demodulation Baudrate = antal symboler
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00 Svaren skall vara läsligt skrivna och så uppställda att lösningen går att följa. När du börjar på en ny uppgift - tag
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Tentamen SSY040/041, del B Sensorer, Signaler och System, Z2
Tentamen SSY4/41, del B Sensorer, Signaler och System, Z2 Examinator: Ants R. Silberberg / Gunnar Elgered 9 mars 21 kl. 8.3-12.3 sal: V Förfrågningar: Ants Silberberg, tel. 188 Lösningar: Anslås onsdag
State Examinations Commission
State Examinations Commission Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training
and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix
Umeå University Exam in mathematics Department of Mathematics Linear algebra and Mathematical Statistics 2012-02-24 Gerold Jäger 9:00-15:00 T ( ) 1 1 2 5 4 1. Compute the following matrix 7 8 (2 p) 2 3
TENTAMEN I REGLERTEKNIK Y (TSRT12)
TENTAMEN I REGLERTEKNIK Y (TSRT12) SAL: U1, U3, U4 TID: 10 juni 2011, klockan 14-19 KURS: TSRT12 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR: 12 ANSVARIG LÄRARE: David Törnqvist, 013-281882,
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)
STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
BRUKSANVISNING. Oscilla 910
BRUKSANVISNING Oscilla 910 C A TEGNÉR AB BOX 20003 161 02 BROMMA TEL 08-564 822 00 FAX 08-564 822 09 INTERNET: www.categner.se E-MAIL: info@categner.se OSCILLA SM910 INNEHÅLL FRONTPANEL... 3 BAKPANEL...
f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Styrteknik : Funktioner och funktionsblock
PLC2A:1 Variabler och datatyper Allmänt om funktioner och funktionsblock Programmering av funktioner Programmering av funktionsblock PLC2A:2 Variabler i GX IEC Developer Global and Local Variables Variables
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Miniräknare och formelsamling i signalbehandling. [Allowed items on exam: calculator and DSP table of formulas ]
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-8 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: MA:9 A-D Hjälpmedel: Miniräknare och formelsamling i signalbehandling.
2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.
Linköpings Universitet, Hållfasthetslära, IEI/IKP TENTAMEN i Mekaniska svängningar och utmattning, TMMI09 2007-10-16 kl 14-18 L Ö S N I N G A R ---- SOLUTIONS 1. Ange sambanden mellan vinkelfrekvens ω,
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015
SVENSK STANDARD SS-EN ISO 19108:2005/AC:2015 Fastställd/Approved: 2015-07-23 Publicerad/Published: 2016-05-24 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.70 Geografisk information Modell
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
HYDRAULIK Rörströmning IV
HYDRAULIK Rörströmning IV Rolf Larsson, Tekn Vattenresurslära För VVR145, 31mars, 2014 NASA/ Astronaut Photography of Earth - Quick View 24 mar VVR015 Hydraulik/ Rörströmning IV 31 mar 2014 / 2 Innehåll
2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1
MÄLARDALEN UNIVERSIY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINAION IN MAHEMAICS MAA15 Linear Algebra Date: 017-06-09 Write time:
Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Name: Personal number: Date of exam: 28 aug Time: 14-18
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 28 aug Time: 14-18 Hjälpmedel
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
District Application for Partnership
ESC Region Texas Regional Collaboratives in Math and Science District Application for Partnership 2013-2014 Applying for (check all that apply) Math Science District Name: District Contacts Name E-mail
EXPERT SURVEY OF THE NEWS MEDIA
EXPERT SURVEY OF THE NEWS MEDIA THE SHORENSTEIN CENTER ON THE PRESS, POLITICS & PUBLIC POLICY JOHN F. KENNEDY SCHOOL OF GOVERNMENT, HARVARD UNIVERSITY, CAMBRIDGE, MA 0238 PIPPA_NORRIS@HARVARD.EDU. FAX:
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
ALGEBRA I SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Syllabus Objective NV State Standard Identify and apply real number properties using variables, including distributive
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Kriterium Kvalitet 1 Kvalitet 2 Kvalitet 3 Kvalitet 4 Använda, Utveckla och uttrycka
Matematik Enheter - Tid Utveckla och Känner till några enheter och enstaka mätinstrument. Utför enkla mätningar. Avläser analoga och digitala tider.använder både muntliga och skriftliga metoder samt tekniska
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
ASIC TENTAMEN TSTE81. Tid: Lördag 24 april 2004 kl. 14:00 18:00. Ansvarig lärare: Oscar Gustafsson, ,
ASIC ENAMEN SE81 id: Lördag 24 april 2004 kl. 14:00 18:00 Plats: 2 Ansvarig lärare: Oscar Gustafsson, 013-28 40 59, 0704-47 26 17 Hjälpmedel: Anvisningar: Räknedosa, aell- och formelsamling i aktiva och
Accomodations at Anfasteröd Gårdsvik, Ljungskile
Accomodations at Anfasteröd Gårdsvik, Ljungskile Anfasteröd Gårdsvik is a campsite and resort, located right by the sea and at the edge of the forest, south west of Ljungskile. We offer many sorts of accommodations
Bered en buffertlösning. Niklas Dahrén
Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också
Tentamen i Krets- och mätteknik, fk - ETEF15
Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2015-10-29 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade
4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar.
Jag har svarat på följande fyra frågor: 1 2 3 4 5 6 Min kod: Institutionen för ekonomi Rob Hart Tentamen Makroekonomi NA0133 Juni 2016 Skrivtid 3 timmar. Regler Svara på 4 frågor. (Vid svar på fler än
Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.
Technique and expression 3: weave 3.5 hp Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2 ExamCode: February 15 th 9-13 Means of assistance: Calculator, colorpencils,
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Digital Signalbehandling i Audio/Video
Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 1) Martin Stridh Lund 2005 2 Kapitel 1 Musikkompression Denna laboration handlar om kompression av ljud och musik
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
SkillGuide. Bruksanvisning. Svenska
SkillGuide Bruksanvisning Svenska SkillGuide SkillGuide är en apparat utformad för att ge summativ återkoppling i realtid om hjärt- och lungräddning. www.laerdal.com Medföljande delar SkillGuide och bruksanvisning.
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
PFC and EMI filtering
PFC and EMI filtering Alex Snijder Field Application Engineer Wurth Elektronik Nederland B.V. November 2017 EMC Standards Power Factor Correction Conducted emissions Radiated emissions 2 Overview of standard
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser Elektronik för D ETIA01 Andrés Alayon Glasunov Palmi Thor Thorbergsson Anders J Johansson Lund Mars 2009 Laboration
Family appendix for applicants Appendix D
amily appendix for applicants Appendix D 1 Your personal particulars Date of birth 2 Personal particulars of your children IGR 201031 Å 100517 3 Personal particulars of your parents Your father's surname,
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/
Kontrollskrivning i Linjär algebra 2014 10 30, 14 18.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt
Användarhandbok. MHL to HDMI Adapter IM750
Användarhandbok MHL to HDMI Adapter IM750 Innehåll Inledning...3 MHL to HDMI Adapter-översikt...3 Komma igång...4 Smart Connect...4 Uppgradera Smart Connect...4 Använda MHL to HDMI Adapter...5 Ansluta
1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)
Divsion of Mathematics Examination Vector algebra and applied mathematics MAA150 - TEN2 Mälardalen University Date: 2015-11-06 Examiner: Mats Bodin Exam aids: not any All solutions should be presented
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Tillståndsmaskiner. 1 Konvertering mellan Mealy och Moore. Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08
Tillståndsmaskiner Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08 Figur 2: En tillståndsgraf av Moore-typ för att markera var tredje etta i en insignalsekvens.
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Föreläsning 8 och 9. insignal. utsignal. Tvåport. Hambley avsnitt 5.5-6.1
1 Föreläsning 8 och 9 Hambley avsnitt 5.56.1 Tvåport En tvåport är en krets med en ingångsport och en gångsport. Dess symbol är en rektangel med ingångsporten till vänster och gångsporten till höger. Tvåporten
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till