ALGEBRA I SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
|
|
- Ebba Lindberg
- för 6 år sedan
- Visningar:
Transkript
1 ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Syllabus Objective NV State Standard Identify and apply real number properties using variables, including distributive commutative, associative, identity,.4..8 inverse, and absolute value to epressions or equations Solve linear equations and represent the solution graphically on a number line and algebraically. Determine if a given relation is a function. Describe and model functions using an input output table, mapping diagram, and writing a function rule with and without technology. Evaluate functions using function notation for given values of the variable. Translate among verbal descriptions, graphic tabular, and algebraic representations of a function with and without technology. Write the equation of a linear function given two points, a point and the slope, table of values, or a graphical representation. Multiple Choice # Objective Syllabus Objective NV State Standard Practice Key Final Key Perform addition, subtraction, and scalar multiplication on.7.7. matrices...7 A B Perform addition, subtraction, and scalar multiplication on.7.7. matrices...7 B A Collect, organize, display, and analyze data using graphical representations including bo and whisker plots C C 4 Determine the probability of an event with and without replacement using sample spaces D D 5 Determine the probability of an event with and without replacement using sample spaces D B 6 Use order or operations to evaluate epressions B A 7 Use order or operations to evaluate epressions B B 8 Evaluate formulas and algebraic epressions using rational numbers (with and without technology)...8. C B 9 Use algebraic epressions to identify and describe the nth term of a sequence.... D A 0 Identify and apply real number properties using variables, including distributive, commutative, associative, identity,.4..8 C A inverse, and absolute value to epressions or equations. Students will simplify algebraic epressions by adding and subtracting like terms..5.. A C Students will simplify algebraic epressions by adding and subtracting like terms..5.. B C Determine if a given relation is a function D B 4 Determine if a given relation is a function A B 5 Describe and model functions using an input output table, mapping diagram, and writing a function rule C C 6 Evaluate functions using function notation for given values of the variable B C Page of Revised: 8/8/08 Clark County School District
2 ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective 7 Translate among verbal descriptions, graphic, tabular, and algebraic representations of a function. 8 Translate among verbal descriptions, graphic, tabular, and algebraic representations of a function. 9 Determine and differentiate between the domain and range of functions. 0 Solve linear equations and represent the solution graphically and algebraically. Solve linear equations and represent the solution graphically and algebraically. Solve linear equations and represent the solution graphically and algebraically. Syllabus Objective NV State Standard Practice Key Final Key B A C B.5..4 D A A A B C C A Solve linear equations and represent the solution graphically and algebraically A A 4 Isolate any variable in given equations, proportions, and formulas to use in mathematical and practical situations D D 5 Solve practical problems involving linear equations with a.. variety of methods, including discrete methods (with and without technology). A A 6 Solve practical problems involving linear equations with a.. variety of methods, including discrete methods (with and without technology). A B 7 Solve linear inequalities and represent the solution graphically on a number line and algebraically B A 8 Solve linear inequalities and represent the solution graphically on a number line and algebraically D C 9 Solve absolute value equations both algebraically and graphically B C 0 Solve compound inequalities both algebraically and graphically C B Solve compound inequalities both algebraically and graphically D B Solve absolute value inequalities both algebraically and graphically D A Compare characteristics of a given family of linear functions B C 4 Compare characteristics of a given family of linear functions A B 5 Determine the slope of lines using coordinate geometry and algebraic techniques D A 6 Determine the slope of lines using coordinate geometry and algebraic techniques A B 7 Determine the slope of lines using coordinate geometry and algebraic A D 8 Determine the and y Intercepts of a line C B 9 Graph linear equations and find possible solutions to those equations using coordinate geometry A D 40 Graph linear equations and find possible solutions to those equations using coordinate geometry D A Page of Revised: 8/8/08 Clark County School District
3 ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective 4 Translate among the different forms of linear equations including slope intercept, point slope, and standard form. 4 Translate among the different forms of linear equations including slope intercept, point slope, and standard form. 4 Write the equation of a linear function given two points, a point and the slope, table of values, or a graphical representation. 44 Write the equation of a linear function given two points, a point and the slope, table of values, or a graphical representation. 45 Identify parallel, perpendicular, and intersecting lines by slope. 46 Identify parallel, perpendicular, and intersecting lines by slope. 47 Design, construct and analyze scatter plots to make predictions. 48 Be able to use a scatterplot to find a linear equation that approimates a set of data points 49 Graph linear inequalities in two variables and find possible solution sets to those inequalities using coordinate geometry. 50 Graph absolute value equations and find possible solutions to those equations using coordinate geometry. Syllabus Objective NV State Standard Practice Key Final Key C B A C C B A B B C C C A A D B C B B A Page of Revised: 8/8/08 Clark County School District
4 Algebra I Semester Practice Eam. Find the product: Which bo-and-whisker plot below represents the following set of data: {0, 4,, 8,, 4, 6, 40, 45, 46}? Find the difference of the matrices: 4. There are 0 equally-sized sections on a spinner. There are 6 blue sections, yellow sections, 9 red sections and green sections. What is the probability of the spinner landing in a blue or yellow section on the first spin? GO ON Clark County School District Revised 8/9/08
5 Algebra I Semester Practice Eam 5. There are 5 blue socks, red socks, and green socks in a drawer. What is the probability of randomly choosing one blue sock, then one red sock, without putting the blue sock back first? Simplify the epression: 6 48 ( ) Evaluate the epression 4+ ( 6) when = Evaluate the epression 5y+ 7 when 4 = and y = Find the equation that matches the pattern represented in the table: 0 4 y y = + 0 y = + y = + y = Simplify the epression 8 + 5( + ) Simplify the epression GO ON Clark County School District Revised 8/9/08
6 Algebra I Semester Practice Eam. Write an epression for the perimeter of the rectangle: z + 4. Which graph below represents a function? 0yz + 5y 0y + 4z + 7yz + 4yz + 5y. Which of the following tables represent functions? I. Input Output 4 4 II. Input Output 4 III. Input Output 0 5 IV. Input Output II only I and IV only III and IV only I, III, and IV only GO ON Clark County School District Revised 8/9/08
7 Algebra I Semester Practice Eam 5. Which input-output table represents the f =? function ( ) 5 4 Input Output Input Output Input Output Input Output Translate the table into words: Input Output The output is four less than triple the input. The output is one less than double the input. The output is one greater than double the input. The output is two greater than the input. 8. Which sentence represents the equation y = + 5, where y represents Karla s age and represents the age of her cousin? Karla s age is years older than 5 times the age of her cousin. Karla s age is years younger than 5 times the age of her cousin. Karla s age is 5 years older than twice the age of her cousin. Karla s age is 5 years younger than twice the age of her cousin. 6. For f( ) = + 4, what is f ()? 9. What is the domain of the following function? {(, ), (, 7), (4, ), (, 5)} { 4} { 7} {,, 5, 7} {,,, 4} GO ON Clark County School District Revised 8/9/08
8 Algebra I Semester Practice Eam 0. Solve the equation 64 = + for. = 4 =. = 4 = Solve = 9 for Solve the equation = 6+ for. ( ) ( ) = = No solution Infinitely many solutions. Which graph represents the solution of.5 +. =.6? 4. Solve the equation A rh r the variable h. h= A 4π r h= A r h = h = A π r π r A π r π r = π + π for 5. Hope uses the equation C = h + 9 to find the total cost, C, in dollars, of renting a bike for h hours. Hope cannot spend more than $0. What is the maimum number of hours she can rent the bike? The number of cars in the student parking lot is 84, which is more than times the number of cars in the teacher parking lot. How many cars are in the teacher parking lot? GO ON Clark County School District Revised 8/9/08
9 Algebra I Semester Practice Eam 7. Which graph below illustrates the inequality? 8. Graph the solution to the inequality: ( ) What is the solution set of 8 =? 5, 4 5, { } 0. Solve the compound inequality: 6n 5< 5 or 0n + < 59 6< n < 5 5< n < 6 n< 5orn> 6 n< 6orn> 5. Which graph below represents the solution to the inequality below? 8 < 0 6k < 4. Solve the inequality below for : 5 < 6 < or < < < or < < > > GO ON Clark County School District Revised 8/9/08
10 Algebra I Semester Practice Eam. What do the following lines have in common? 5. Find the slope of the line in the graph. y They have the same -intercept. They have the same y-intercept. They have the same slope. They are the same function. 4. Which statement about the comparison between the graphs of y = and y = 5 is correct? The graph of y = 5 is steeper than the graph of y = The graph of y = 5 is less steep than the graph of y = The graph of y = 5 is shifted units up from the graph of y = The graph of y = 5 is shifted units down from the graph of y = What is the slope of the line that passes through the points (4, 6) and ( 4, 9)? Undefined GO ON Clark County School District Revised 8/9/08
11 Algebra I Semester Practice Eam 7. What is the slope of the line that passes through the points (, ) and (5, )? 0 undefined 9. Which graph best represents the equation y = +? (Assume the scales on both 5 aes are one unit per tick mark.) 8. What are the intercepts of the graph of the equation 5 + 4y =? -intercept = 5, y-intercept = 4 -intercept = 5, y-intercept = 4 -intercept = 5, y-intercept = -intercept = 5, y-intercept = GO ON Clark County School District Revised 8/9/08
12 Algebra I Semester Practice Eam 40. Use the graph below. 4. Rewrite the following equation in slopeintercept form: 6 7y = 84 6 y = y = 7 6 y = + 7 What is the equation of the line in the graph? 4y = y = 8 4y = 8 4 y = 8 4. Rewrite the following equation in standard form: y 8= + 6 y = y = 4 y = y = 8 ( ) 6 y = 7 4. Which equation below, in point-slope form, represents the line that passes through the point (, ) with a slope of? y = ( + ) y+ = ( ) y = ( + ) y+ = ( ) GO ON Clark County School District Revised 8/9/08
13 Algebra I Semester Practice Eam 44. What is the equation of the line in slopeintercept form passing through the points in the table? y = + 6 y = 6 y = y = Which line is parallel to the line y = 4? y = 4+ y = y y = + y = The scatterplot below shows the hours a student studied for his final eam and his grade on that eam Eam Grade Hours Studied Based on a linear relationship between the variables, what is the best prediction of the final eam grade for a student who studies for hours? 46. Which equation represents the line that contains the point (0,4) and is perpendicular to the line represented by y = +? y = + 4 y = + 4 y = + y = GO ON Clark County School District Revised 8/9/08
14 Algebra I Semester Practice Eam 48. Use the scatterplot below. Assume the scales on each ais are one unit per tick mark. 49. Which graph correctly represents y< 8 6? (Assume the scales on both aes are one unit per tick mark.) Which of the equations would most accurately represent the line of best fit for the data? y = + 0 y = + 0 y = 0 y = GO ON Clark County School District Revised 8/9/08
15 Algebra I Semester Practice Eam 50. Use the graph below. What is the equation of the function? y = 5 y = + 5 y = 5 y = Clark County School District Revised 8/9/08
16 Algebra I Semester Practice Eam Free Response. Justify each step used to solve the algebraic equation ( 5) = +. List each step Justification for each step GO ON Clark County School District Revised 8/9/08
17 Algebra I Semester Practice Eam Free Response. Use the following graph to answer the questions below. (The scales for each ais are one unit per tick mark.) y Complete the table of values below: 4 7 y According to the table and graph above, is this relation a function? Justify your answer. Model the graph with a linear equation in function notation GO ON Clark County School District Revised 8/9/08
18 Algebra I Semester Practice Eam Free Response. Sam rented a moving truck for a $45.00 fee and an additional $0.5 per mile driven. Write a linear equation to model the cost (C) for the number of miles driven (m). Sam paid $59.00 when he returned the truck. How many miles did he drive? How would the graph of the cost equation from Part A look different from the graph of C = 0.7m+ 55? What would this mean in the contet of the rental truck problem? Clark County School District Revised 8/9/08
ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Sllabus Objective NV State Standard 1 Graph a polnomial function. 1.1.7.1 Analze graphs of polnomial functions
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version
Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Engelsk version 2 Innehåll Inledning... 5 Written methods... 7 Mental arithmetic, multiplication and division... 9
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3. Engelsk version
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 Engelsk version Exempeluppgifter i årskurs 3, 2010, 2011 och 2012 1 Äp3Ma13 Part B 2 Innehåll Inledning... Fel! Bokmärket är
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
1. Find an equation for the line λ which is orthogonal to the plane
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-04-23
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
http://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/
Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
Libers språklåda i engelska Grab n go lessons
Libers språklåda i engelska 7-9 - Grab n go lessons PROVLEKTION Libers språklåda i engelska Grab n go lessons (47-90988-9) Författarna och Liber AB Får kopieras 1 Two stories in one Förberedelser Kopiera
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
Rep MEK föreläsning 2
Rep MEK föreläsning 2 KRAFTER: Kontaktkrafter, Distanskrafter FRILÄGGNING NI: Jämviktsekv. Σ F = 0; Σ F = 0, Σ F = 0, Σ F = 0 x y z NII: Σ F = ma; Σ F = ma, Σ F = ma, Σ F = ma x x y y z z NIII: Kraft-Motkraft
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Second handbook of research on mathematics teaching and learning (NCTM)
Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens
1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-02-15
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Workplan Food. Spring term 2016 Year 7. Name:
Workplan Food Spring term 2016 Year 7 Name: During the time we work with this workplan you will also be getting some tests in English. You cannot practice for these tests. Compulsory o Read My Canadian
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg
Swedish adaptation of ISO TC 211 Quality principles The subject How to use international standards Linguistic differences Cultural differences Historical differences Conditions ISO 19100 series will become
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty
79% of the division trade is generated by Harrods Rewards customers 30% of our Beauty clients are millennials 42% of our trade comes from tax-free customers 73% of the department base is female Source:
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN Date:
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA11 Single Variable Calculus, TEN Date:
FYTA11-ma1, ht13. Respondents: 11 Answer Count: 9 Answer Frequency: 81,82 %
FYTA11-ma1, ht13 Respondents: 11 Answer Count: 9 Answer Frequency: 81,82 % General opinion Give your opinion in the scale 1-5. 1 = very negative 2 = negative 3 = neutral 4 = positive 5 = very positive
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Accomodations at Anfasteröd Gårdsvik, Ljungskile
Accomodations at Anfasteröd Gårdsvik, Ljungskile Anfasteröd Gårdsvik is a campsite and resort, located right by the sea and at the edge of the forest, south west of Ljungskile. We offer many sorts of accommodations
Normalfördelning. Modeller Vi har alla stött på modeller i olika sammanhang. Ex:
Normalfördelning 1 Modeller Vi har alla stött på modeller i olika sammanhang. Ex: Leksaksbilar Modelljärnvägar Dockskåp 2 En leksaksbil är i vissa avseenden en kopia av en riktig bil. Men den skiljer sig
Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families
Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic
Writing with context. Att skriva med sammanhang
Writing with context Att skriva med sammanhang What makes a piece of writing easy and interesting to read? Discuss in pairs and write down one word (in English or Swedish) to express your opinion http://korta.nu/sust(answer
Kursplan. NA3009 Ekonomi och ledarskap. 7,5 högskolepoäng, Avancerad nivå 1. Economics of Leadership
Kursplan NA3009 Ekonomi och ledarskap 7,5 högskolepoäng, Avancerad nivå 1 Economics of Leadership 7.5 Higher Education Credits *), Second Cycle Level 1 Mål Studenterna skall efter genomgången kurs: kunna
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 209-06-07 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Victoriahallen, Victoriahallen 2A Hjälpmedel: Viktigt:
1. Find for each real value of a, the dimension of and a basis for the subspace
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linear Algebra Date: 208-0-09 Write
District Application for Partnership
ESC Region Texas Regional Collaboratives in Math and Science District Application for Partnership 2013-2014 Applying for (check all that apply) Math Science District Name: District Contacts Name E-mail
Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE
SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document
Gradientbaserad Optimering,
Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos
Exam Molecular Bioinformatics X3 (1MB330) - 1 March, Page 1 of 6. Skriv svar på varje uppgift på separata blad. Lycka till!!
Exam Molecular Bioinformatics X (MB) - March, - Page of Skriv svar på varje uppgift på separata blad. Lycka till!! Write the answers to each of the questions on separate sheets of paper. ood luck!! ) Sequence
Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås
Schenker Privpak AB Interface documentation for web service packageservices.asmx 2012-09-01 Version: 1.0.0 Doc. no.: I04304b Sida 2 av 7 Revision history Datum Version Sign. Kommentar 2012-09-01 1.0.0
Tentamen MMG610 Diskret Matematik, GU
Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,
Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05
Om oss Vi på Binz är glada att du är intresserad av vårt support-system för begravningsbilar. Sedan mer än 75 år tillverkar vi specialfordon i Lorch för de flesta olika användningsändamål, och detta enligt
and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix
Umeå University Exam in mathematics Department of Mathematics Linear algebra and Mathematical Statistics 2012-02-24 Gerold Jäger 9:00-15:00 T ( ) 1 1 2 5 4 1. Compute the following matrix 7 8 (2 p) 2 3
Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 207--06
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Calculate check digits according to the modulus-11 method
2016-12-01 Beräkning av kontrollsiffra 11-modulen Calculate check digits according to the modulus-11 method Postadress: 105 19 Stockholm Besöksadress: Palmfeltsvägen 5 www.bankgirot.se Bankgironr: 160-9908
(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 07-03-
Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Make a speech. How to make the perfect speech. söndag 6 oktober 13
Make a speech How to make the perfect speech FOPPA FOPPA Finding FOPPA Finding Organizing FOPPA Finding Organizing Phrasing FOPPA Finding Organizing Phrasing Preparing FOPPA Finding Organizing Phrasing
Tentamen i matematik. Högskolan i Skövde
Högskolan i Skövde Tentamen i matematik Kurs: MA52G Matematisk analys MA23G Matematisk analys för ingenjörer Tentamensdag: 206-03-2 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
E: 9p D: 10p C: 14p B: 18p A: 22p
MID SWEDEN UNIVERSITY DMA Examination 2017 MA095G & MA098G Discrete Mathematics (English) Time: 5 hours Date: 16 March 2017 Pia Heidtmann The compulsory part of this examination consists of 8 questions.
f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN2 Date:
Miniräknare och en valfri formelsamling i signalbehandling eller matematik. Allowed items: calculator, DSP and mathematical tables of formulas
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik Tentamen 08-05-3 SIGNALBEHANDLING i MULTIMEDIA, EITA50 Tid: 08.00-3.00 Sal: Vic A Hjälpmedel: Viktigt: Miniräknare och en valfri
Technique and expression 3: weave. 3.5 hp. Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2.
Technique and expression 3: weave 3.5 hp Ladokcode: AX1 TE1 The exam is given to: Exchange Textile Design and Textile design 2 ExamCode: February 15 th 9-13 Means of assistance: Calculator, colorpencils,
STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)
STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write
EXPERT SURVEY OF THE NEWS MEDIA
EXPERT SURVEY OF THE NEWS MEDIA THE SHORENSTEIN CENTER ON THE PRESS, POLITICS & PUBLIC POLICY JOHN F. KENNEDY SCHOOL OF GOVERNMENT, HARVARD UNIVERSITY, CAMBRIDGE, MA 0238 PIPPA_NORRIS@HARVARD.EDU. FAX:
UTLYSNING AV UTBYTESPLATSER VT12 inom universitetsövergripande avtal
UTLYSNING AV UTBYTESPLATSER VT12 inom universitetsövergripande avtal Sista ansökningsdag: 2011-05-18 Ansökan skickas till: Birgitta Rorsman/Kjell Malmgren Studentavdelningen Box 100 405 30 Göteborg Eller
Undergraduate research:
Undergraduate research: Laboratory experiments with many variables Arne Rosén 1, Magnus Karlsteen 2, Jonathan Weidow 2, Andreas Isacsson 2 and Ingvar Albinsson 1 1 Department of Physics, University of
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION 120607 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition En ordbok: studentenshemspråk engelska Betygsgräns:
7,5 högskolepoäng. Väveriteknik, skriftlig tentamen 51TV10 och AX10VT TD
Väv Provmoment: Ladokkod: Tentamen ges för: Namn: (Ifylles av student) Personnummer: (Ifylles av student) Väveriteknik, skriftlig tentamen 51TV10 och AX10VT TD 7,5 högskolepoäng Tentamensdatum: 2016-04-24
Support for Artist Residencies
1. Basic information 1.1. Name of the Artist-in-Residence centre 0/100 1.2. Name of the Residency Programme (if any) 0/100 1.3. Give a short description in English of the activities that the support is
Measuring child participation in immunization registries: two national surveys, 2001
Measuring child participation in immunization registries: two national surveys, 2001 Diana Bartlett Immunization Registry Support Branch National Immunization Program Objectives Describe the progress of
Support Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH PRELIMINARY LSPSWEP/0Y09
EXTENAL ASSESSMENT SAMPLE TASKS SWEDISH PELIMINAY LSPSWEP/0Y09 Asset Languages External Assessment Sample Tasks Preliminary Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
Collaborative Product Development:
Collaborative Product Development: a Purchasing Strategy for Small Industrialized House-building Companies Opponent: Erik Sandberg, LiU Institutionen för ekonomisk och industriell utveckling Vad är egentligen
Listen to me, please!
Till pedagogen är särskilt riktat mot det centrala innehållet Lyssna och läsa i ämnet engelska i Lgr11. Syftet med materialet är att: Eleverna ska ha roligt tillsammans i situationer där eleven är ledare.
Unit course plan English class 8C
Hanna Rüngen Wallner Unit course plan English class 8C Spring term 2018-01-11 w.2-8 forgery safe robbery burglar crime scene Mål och syfte med arbetsområdet Utveckla sin förmåga att: - kommunicera i tal
Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori
Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori (kurskod SA104X, 15hp, VT15) http://www.math.kth.se/optsyst/grundutbildning/kex/ Förkunskaper Det är ett krav att
. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:
Styrteknik : Funktioner och funktionsblock
PLC2A:1 Variabler och datatyper Allmänt om funktioner och funktionsblock Programmering av funktioner Programmering av funktionsblock PLC2A:2 Variabler i GX IEC Developer Global and Local Variables Variables
Theory 1. Summer Term 2010
Theory 1 Summer Term 2010 Robert Elsässer 1 Introduction Summer Term 2010 Robert Elsässer Prerequisite of Theory I Programming language, such as C++ Basic knowledge on data structures and algorithms, mathematics