Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
|
|
- Maj-Britt Hansson
- för 8 år sedan
- Visningar:
Transkript
1 Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: ) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik (from MAI); TAMS 11: Notations and Formulae (by Xiangfeng Yang), OR a personal formula sheet (two pages); a dictionary. Please answer in ENGLISH if you can. b. Scores rating: 8-11 points giving rate 3; points giving rate 4; points giving rate 5. 1 (3 points) English Version Random variables X and Y are independent and take values j 1, j 2, j 3, and k 1, k 2, k 3, respectively. Complete the following unfinished table of probability mass function p X,Y (j, k). j\k k 1 k 2 k 3 j 1 p X,Y (j 1, k 1 ) = 0.03 p X,Y (j 1, k 2 ) = 0.15 p X,Y (j 1, k 3 ) =? j 2 p X,Y (j 2, k 1 ) = 0.04 p X,Y (j 2, k 2 ) =? p X,Y (j 2, k 3 ) =? j 3 p X,Y (j 3, k 1 ) = 0.03 p X,Y (j 3, k 2 ) =? p X,Y (j 3, k 3 ) =? Solution. We will show that p X (j 1 ) = 0.3; p X (j 2 ) = 0.4, p X (j 3 ) = 0.3; p Y (k 1 ) = 0.1; p Y (k 2 ) = 0.5, p Y (k 3 ) = 0.4. ( ) Once we know these, it is then trivial to get (from independence) p X,Y (j 1, k 3 ) = p X (j 1 ) p Y (k 3 ) = = 0.12; p X,Y (j 2, k 2 ) = p X (j 2 ) p Y (k 2 ) = = 0.2; p X,Y (j 2, k 3 ) = p X (j 2 ) p Y (k 3 ) = = 0.16; p X,Y (j 3, k 2 ) = p X (j 3 ) p Y (k 2 ) = = 0.15; p X,Y (j 3, k 3 ) = p X (j 3 ) p Y (k 3 ) = = To see the probabilities in ( ), we first notice that p Y (k 1 ) = = = p X,Y (j 1, k 1 ) = p X (j 1 ) p Y (k 1 ) = p X (j 1 ) 0.1 implies p X (j 1 ) = 0.3; 0.04 = p X,Y (j 2, k 1 ) = p X (j 2 ) p Y (k 1 ) = p X (j 2 ) 0.1 implies p X (j 2 ) = 0.4; 1 = p X (j 1 ) + p X (j 2 ) + p X (j 3 ) = p X (j 3 ) implies p X (j 3 ) = 0.3; 0.15 = p X,Y (j 1, k 2 ) = p X (j 1 ) p Y (k 2 ) = 0.3 p Y (k 2 ) implies p Y (k 2 ) = 0.5; 1 = p Y (k 1 ) + p Y (k 2 ) + p Y (k 3 ) = p Y (k 3 ) implies p Y (k 3 ) = 0.4. Page 1/4
2 2 (3 points) Let (X, Y ) be a two-dimension random variable with a joint probability density function f X,Y (x, y) = 2(1 + x + y) 3 if x 0 and y 0. (2.1). (2p) Find the marginal density function f X (x) of X and the marginal density function f Y (y) of Y. (2.2). (1p) Are X and Y independent? Why? Solution. (2.1) Similarly, (2.2) Since f X (x) = f Y (y) = X and Y are NOT independent. f X,Y (x, y)dy = f X,Y (x, y)dx = (1 + x + y) 3 dy = 1 (1 + x + y) 2 y= y=0 = 1 (1 + x) 2, x 0. 2 (1 + x + y) 3 dx = 1 x= 1 (1 + x + y) 2 = x=0 (1 + y) 2, y 0. f X,Y (x, y) f X (x) f Y (y), 3 (3 points) There are 1000 families in a residential area, and they are going to decide the number of day-care seats for their children. The probabilities that each family has zero, one, two, three children are 0.4, 0.2, 0.3, 0.1, respectively. The number of children in different families is assumed to be independent. How many day-care seats for children should be planned in order that the probability that every child will have a seat is 90%. (Hint: central limit theorem) Solution. Let X be the number of children in a family. Then X has a distribution as follows X p(x) The mean µ = E(X) = = 1.1, and σ 2 = V (X) = E(X 2 ) (E(X)) 2 = Now we assume that X 1, X 2,..., X 1000 are the numbers of children in these 1000 families respectively. If there are? day-care seats in total, then 90% = P (every child will have a seat) = P (X 1 + X X 1000 <?) = P ( X 1 + X X = P ( X? µ σ/ n < 1000 µ From Normal table, we have z 10% = Therefore So there must be 1143 day-care seats. <? 1000 ) = P ( X <? 1000 )? σ/ n ) = P (N(0, 1) < 1000 µ σ/ n )? 1000 µ σ/ n = z 10% = 1.28, thus? = 1000 ( ) = Page 2/4
3 4 (3 points) Suppose that the distribution of a population X has the probability mass function as follows X 1 2 p(x) 1 p p where p is unknown. We have a sample from this distribution with the following observations: (4.1). (1p) Find a point estimate ˆp MM of p using Method of Moments. (4.2). (2p) Find a point estimate ˆp ML of p using Maximum-Likelihood method. (Hint: P (X = x) = p x 1 (1 p) 2 x ) Solution. (4.1). For Method of Moments, the first equation is E(X) = X. The mean E(X) can be calculated as E(X) = 1 (1 p) + 2 p = 1 + p. By solving E(X) = X, we have p = X 1 which yields ˆp MM = X 1. From the data, x = = 5/3, thus ˆp MM = = 2 3. (4.2). For the Maximum-Likelihood method, we write the likelihood function as Maximizing L(p) is equivalent to maximize ln L(p) where By d ln L(p) dp = 0, we have (Xi 1) (The second derivative d2 ln L(p) dp 2 p L(p) = f(x 1 ) f(x 2 )... f(x n ) = p (X i 1) (1 p) (2 X i). ln L(p) = (X i 1) ln p + (2 X i ) ln(1 p). (2 Xi) 1 p = 0, therefore ˆp ML = Xi n n = X 1. From the data ˆp ML = 2 3. < 0 which yields that ˆp ML is indeed a maximal point) 5 (3 points) The minimal daily demand on zinc of a male person over 30 years of age is 15 mg. Assume that a scientist measures the zinc intake of randomly selected male person over 30 years of age. Assume that the observations are independent and from a population N(µ, σ 2 ). The sample mean is x = 13 and the sample standard deviation is s = 6. (5.1). (1p) If σ is unknown, find a 95% confidence interval of µ. (5.2). (1p) If σ is known σ = 4, find a 95% confidence interval of µ. (5.3). (1p) If σ is unknown, find a 95% confidence interval of σ 2. Solution. (5.1) Since σ is unknown, a 95% confidence interval of µ would be x ± t α/2 (n 1) s n = 13 ± t 0.0 ( 1) 6 = 13 ± 2.06 (5.2) Since σ is known σ = 4,, a 95% confidence interval of µ would be x ± z α/2 σ n = 13 ± z = 13 ± = 13 ± = (10.528, ). 4 = 13 ± = (11.432, ). (5.3) A 95% confidence interval of σ 2 would be ( ) (n 1)s 2 (n 1)s 2 ( ( 1)6 2 ( 1)6 2 ) χ 2 α/2 (n 1), = (n 1) χ ( 1), χ 2 = ( 1) χ 2 1 α/2 ( ) , 864 = (21.94, ) Page 3/4
4 6 (3 points) 16 measurements of the same item have resulted in the following values: 5.14, 3.76, 5.09, 5.87, 6.33, 4.03, 6., 5.57, 3.28, 5.12, 5.66, 5.10, 4.63, 5.74, 4.20, The average of the data is x = It is assumed that the measurements are the outcomes of independent N(µ, 1 2 ) random variables. We want to test the following hypotheses H 0 : µ = 5 versus H a : µ > 5. (6.1). (1p) If a level α = 0.05 is used, do you reject H 0? Why? (6.2). (2p) For the test in (6.1), what is the probability of not concluding that µ > 5 when the actual µ = 5.5? Solution. (6.1) Since the population variance is known σ 2 = 1 2, according to H a the rejection region (z α, + ) = (z 0.05, + ) = (1.65, + ). The test statistic is x µ0 σ/ n = / 16 = Since the test statistic is NOT in the rejection region, we do NOT reject H 0. (6.2) This is a Type II error, namely β(5.5) = P (don t reject H 0 when H 0 is wrong and µ = 5.5) = P ( X µ 0 σ/ n < 1.65 when µ = 5.5) (need to change X µ 0 σ/ n to X µ σ/ n since X µ σ/ N(0, 1)) n = P ( X µ σ/ n + µ µ 0 σ/ < 1.65 when µ = 5.5) n = P (Z / 16 < 1.65) = P (Z < 0.35) = = Page 4/4
5 Kurskod: TAMS11 Provkod: TENB 28 augusti 2014, kl Examinator/Examiner: Xiangfeng Yang (Tel: ) a. Tillåtna hjälpmedel är: en räknare; formel -och tabellsamling i matematisk statistik (från MAI); TAMS 11: Notations and Formulae (by Xiangfeng Yang); ELLER egna anteckningar (max två sidor); en ordbok. Vänligen svara på ENGELSKA om du kan. b. Betygsgränser: 8-11 poäng ger betyg 3; poäng ger betyg 4; poäng ger betyg 5. 1 (3 poäng) Svensk Version Stokastiska variabler X och Y är oberoende och antar värdena j 1, j 2, j 3 respektive k 1, k 2, k 3. Komplettera följande ofullständiga tabell över sannolikhetsfunktionen p X,Y (j, k). 2 (3 poäng) j\k k 1 k 2 k 3 j 1 p X,Y (j 1, k 1 ) = 0.03 p X,Y (j 1, k 2 ) = 0.15 p X,Y (j 1, k 3 ) =? j 2 p X,Y (j 2, k 1 ) = 0.04 p X,Y (j 2, k 2 ) =? p X,Y (j 2, k 3 ) =? j 3 p X,Y (j 3, k 1 ) = 0.03 p X,Y (j 3, k 2 ) =? p X,Y (j 3, k 3 ) =? Låt (X, Y ) vara en tvådimensionall stokastisk variabel med täthetsfunktionen f X,Y (x, y) = 2(1 + x + y) 3 om x 0 och y 0. (2.1). (2p) Beräkna täthetsfunktionen f X (x) för X och täthetsfunktionen f Y (y) för Y. (2.2). (1p) Är X och Y oberoende? Varför? 3 (3 poäng) Ett bostadsområde för 1000 familjer planeras. Sannolikheterna för att en familj har inget, ett, två respektive tre barn i förskoleåldern antas vara 0.4, 0.2, 0.3, 0.1. Antalet barn i olika familjer förutsätts oberoende. Hur många daghemsplatser skall planeras om sannolikheten för att alla barn ska få daghemsplats skall vara 90%. (Ledning: centrala gränsvärdessatsen) 4 (3 poäng) Antag att fördelningen för en population X har sannolikhetsfunktionen enligt följande X 1 2 p(x) 1 p p där p är okänd. Vi har ett stickprov från denna fördelning med observerade värden: (4.1). (1p) Hitta en punktskattning ˆp MM av p genom att använda momentmetoden. (4.2). (2p) Hitta en punktskattning ˆp ML av p genom att använda Maximum Likelihood-metoden. (Ledning: P (X = x) = p x 1 (1 p) 2 x ) Page 1/2
6 5 (3 poäng) Minsta dagliga behov av zink är 15 mg för män över 30 år. Antag att man mäter zinkintaget för slumpmässigt utvalda män över 30 år. Antag att observationerna är oberoende och från en population N(µ, σ 2 ). Stickprovsmedelvärdet är x = 13 och stickprovsstandardavvikelsen är s = 6. (5.1). (1p) Om σ är okänd, finn ett 95% konfidensintervall för µ. (5.2). (1p) Om σ är känd σ = 4, finn ett 95% konfidensintervall för µ. (5.3). (1p) Om σ är okänd, finn ett 95% konfidensintervall för σ 2. 6 (3 poäng) Man har gjort 16 upprepade oberoende mätningar av samma storhet och erhållit följande mätvärden: 5.14, 3.76, 5.09, 5.87, 6.33, 4.03, 6., 5.57, 3.28, 5.12, 5.66, 5.10, 4.63, 5.74, 4.20, Observationernas medelvärde är x = Normalfördelning N(µ, 1 2 ) kan antas föreligga. Vi vill testa följande hypotesen H 0 : µ = 5 versus H a : µ > 5. (6.1). (1p) Om nivån α = 0.05 används, förkastar du H 0? Varför? (6.2). (2p) För testet i (6.1), vad är sannolikheten att inte dra slutsatsen att µ > 5 men µ = 5.5? Page 2/2
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Läs merKurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version
Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Läs merEnglish Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =
TAMS11: Probability and Statistics Provkod: TENB 11 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel
Läs merKurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon. English Version
Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, 14-18 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring a calculator, the formula and table collection
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merKurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN 6 January 205, 8:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the
Läs merThis exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Läs merEnglish Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merEnglish Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN1 2017-01-03 14:00-18:00 Examinator/Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merKurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version
Kurskod: TAMS Provkod: TENB 2 June 204, 4:00-8:00 Exmintor/Exminer: Xingfeng Yng (Tel: 070 2234765). You re permitted to bring: clcultor; formel -och tbellsmling i mtemtisk sttistik (from MAI); TAMS :
Läs merEnglish Version. + 1 n 2. n 1
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merF ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Läs mer12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Läs merExam MVE265 Mathematical Statistics,
Exam MVE65 Mathematical Statistics, 016-05-31 The exam consists of eight exercises with a total of 50 points. You need as least 0 points to get a 3, at least 30 points for a 4 and at least 40 points for
Läs merChapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Läs mer1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Läs merModule 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Läs merHögskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Läs merModule 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Läs merIsometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
Läs merdenna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merTentamen MMG610 Diskret Matematik, GU
Tentamen MMG610 Diskret Matematik, GU 2017-01-04 kl. 08.30 12.30 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers/GU Telefonvakt: Peter Hegarty, telefon: 0766 377 873 Hjälpmedel: Inga hjälpmedel,
Läs merPre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Läs merTentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Läs mer2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
Läs merStatistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
Läs merSolutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
Läs merModule 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
Läs merS 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Läs merS 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Läs mer1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
Läs merGrafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
Läs mer4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Läs merx 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Läs merStatistiska analyser C2 Inferensstatistik. Wieland Wermke
+ Statistiska analyser C2 Inferensstatistik Wieland Wermke + Signifikans och Normalfördelning + Problemet med generaliseringen: inferensstatistik n Om vi vill veta ngt. om en population, då kan vi ju fråga
Läs merTentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE3 Sannolihet, statisti och ris 215-6-4 l. 8.3-13.3 Examinator: Johan Jonasson, Matematisa vetensaper, Chalmers Telefonvat: Johan Jonasson, telefon: 76-985223 31-7723546 Hjälpmedel: Typgodänd
Läs merIsolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
Läs merGrafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Läs merHur fattar samhället beslut när forskarna är oeniga?
Hur fattar samhället beslut när forskarna är oeniga? Martin Peterson m.peterson@tue.nl www.martinpeterson.org Oenighet om vad? 1.Hårda vetenskapliga fakta? ( X observerades vid tid t ) 1.Den vetenskapliga
Läs mer(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Läs merFÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
Läs merWebbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
Läs mer9. Beräkna volymen av det område som begränsas av planet z = 1 och paraboloiden z = 5 x 2 y 2.
Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 3 juni, 15, V-huset. Examinator: Marina Axelson-Fisk. Tel: 7-88113 Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik EXAM IN 5B50 SANNOLIKHETSTEORI OCH STATISTIK I TUESDAY DECEMBER 20, 2005 08.00AM 0.00PM. Examiner: Dan Mattsson, tel. 790 735. Permissible aids : Formel- och tabellsamling i Matematisk
Läs merBeijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Läs merf(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Läs merTentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Läs merGrafisk teknik. Sasan Gooran (HT 2006)
Grafisk teknik Sasan Gooran (HT 2006) Iterative Method Controlling Dot Placement (IMCDP) Assumptions: The original continuous-tone image is scaled between 0 and 1 0 and 1 represent white and black respectively
Läs merLUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Läs merTentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Läs merMVE051/MSG810 Matematisk statistik och diskret matematik
Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:
Läs merMVE051/MSG810 Matematisk statistik och diskret matematik
Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:
Läs merEXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
Läs merHjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325
MATEMATIK Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 08 kl 0830 30 Tentamen Telefonvakt: Jonatan Kallus Telefon: ankn 535 MMG00 Envariabelsanalys Tentan rättas och bedöms anonymt
Läs merRastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
Läs merWorkplan Food. Spring term 2016 Year 7. Name:
Workplan Food Spring term 2016 Year 7 Name: During the time we work with this workplan you will also be getting some tests in English. You cannot practice for these tests. Compulsory o Read My Canadian
Läs mera) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer MA712A Matematik för lärare C, delkurs Matematisk analys Tentamensdag:
Läs merSecond handbook of research on mathematics teaching and learning (NCTM)
Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens
Läs merMVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)
Chalmers tekniska högskola Datum: 7--9 kl. 8.3.3 Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade
Läs merk x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling
Läs merCalculate check digits according to the modulus-11 method
2016-12-01 Beräkning av kontrollsiffra 11-modulen Calculate check digits according to the modulus-11 method Postadress: 105 19 Stockholm Besöksadress: Palmfeltsvägen 5 www.bankgirot.se Bankgironr: 160-9908
Läs merFind an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 207--06
Läs mersamhälle Susanna Öhman
Risker i ett heteronormativt samhälle Susanna Öhman 1 Bakgrund Riskhantering och riskforskning har baserats på ett antagande om att befolkningen är homogen Befolkningen har alltid varit heterogen när det
Läs merAlgoritmer och Komplexitet ht 08. Övning 6. NP-problem
Algoritmer och Komplexitet ht 08. Övning 6 NP-problem Frekvensallokering Inom mobiltelefonin behöver man lösa frekvensallokeringsproblemet som lyder på följande sätt. Det finns ett antal sändare utplacerade.
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merSupport Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
Läs merS0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula
Mykola Shykula LTU Mykola Shykula (LTU) 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Mykola Shykula (LTU) 2 / 18 Stokastiska
Läs merTentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00
Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:
Läs merSF1911: Statistik för bioteknik
SF1911: Statistik för bioteknik Föreläsning 4. TK 7.11.2017 TK Matematisk statistik 7.11.2017 1 / 42 Lärandemål Betingad sannolikhet (definition, betydelse) Oberoende händelser Lagen om total sannolikhet
Läs merf(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN2 Date:
Läs merhttp://marvel.com/games/play/31/create_your_own_superhero http://www.heromachine.com/
Name: Year 9 w. 4-7 The leading comic book publisher, Marvel Comics, is starting a new comic, which it hopes will become as popular as its classics Spiderman, Superman and The Incredible Hulk. Your job
Läs mer1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA11 Single Variable Calculus, TEN Date:
Läs merProvlektion Just Stuff B Textbook Just Stuff B Workbook
Provlektion Just Stuff B Textbook Just Stuff B Workbook Genomförande I provlektionen får ni arbeta med ett avsnitt ur kapitlet Hobbies - The Rehearsal. Det handlar om några elever som skall sätta upp Romeo
Läs merNP-fullständighetsbevis
Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 9 NP-fullständighetsbevis På denna övning är det också inlämning av skriftliga lösningar av teoriuppgifterna till labb 4 och
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merS 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN Date:
Läs merWebbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
Läs merS0005M, Föreläsning 2
S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Läs merF14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
Läs merEnglish Version P (A) = P (B) = 0.5.
TAMS11: Probability ad Statistics Provkod: TENB 23 March 2016, 14:00-18:00 Examier: iagfeg Yag Tel: 070 0896661 Please aswer i ENGLISH if you ca a You are allowed to use: a calculator; formel -och tabellsamlig
Läs merDiscovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers 12-24. Misi.se 2011 1
Discovering!!!!! ÅÄÖ EPISODE 6 Norrlänningar and numbers 12-24 Misi.se 2011 1 Dialogue SJs X2000* från Stockholm är försenat. Beräknad ankoms?d är nu 16:00. Försenat! Igen? Vad är klockan? Jag vet inte.
Läs merStyrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
Läs mer8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Läs mer5 Kontinuerliga stokastiska variabler
5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.
Läs merKvalitetsarbete I Landstinget i Kalmar län. 24 oktober 2007 Eva Arvidsson
Kvalitetsarbete I Landstinget i Kalmar län 24 oktober 2007 Eva Arvidsson Bakgrund Sammanhållen primärvård 2005 Nytt ekonomiskt system Olika tradition och förutsättningar Olika pågående projekt Get the
Läs merTentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering
KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl
Läs merWriting with context. Att skriva med sammanhang
Writing with context Att skriva med sammanhang What makes a piece of writing easy and interesting to read? Discuss in pairs and write down one word (in English or Swedish) to express your opinion http://korta.nu/sust(answer
Läs merDatorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,
Läs merPreschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
Läs merR AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002
RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions
Läs mer