Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version
|
|
- Julia Sundqvist
- för 7 år sedan
- Visningar:
Transkript
1 Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, Examinator/Examiner: Xiangfeng Yang (Tel: ) a. You are permitted to bring a calculator, the formula and table collection edited by MAI. Please answer in ENGLISH if you can. b. Scores rating: 8-11 points giving rate 3; points giving rate 4; points giving rate 5. 1 (3 points) English Version The lifetime (in hours) of a certain type of radio tubes is assumed to be a continuous random variable X with a density function { 100/x 2, if x > 100, f X (x) = 0, otherwise. (1.1). (1p) Find the probability that a tube works less than 200 hours. (1.2). (1p) Find the probability that a tube still works after 150 hours. (1.3). (1p) Find the probability that a tube works less than 200 hours, given that this tube still works after 150 hours. Solution. (1.1) (1.2) (1.3) P (X < 200) = P (X > 150) = P (X < 200 X > 150) = f X (x)dx = f X (x)dx = P (150 < X < 200) P (X > 150) 200 = /x 2 dx = 1/2. 100/x 2 dx = 2/ /x2 dx = 1/6 2/3 2/3 = 1 4 = (3 points) A large freight elevator can transport a maximum of 9800 kg. Suppose a load of cargo containing 49 boxes must be transported via the elevator. If we know that the weight of a box of this type follows a distribution with mean µ = 205 kg and standard deviation σ = 15 kg. Based on this information, what is the probability that all 49 boxes can be safely loaded onto the elevator and transported? Solution. Let {X 1,..., X 49 } be the weights of these 49 boxes. In order to make sure that all 49 boxes can be safely loaded onto the elevator and transported, it is required that X X Therefore we aim to find the probability P (X X ). From CLT, it follows P (X X ) = P ( X X = P ( X µ σ/ n 200 µ σ/ n = P (N(0, 1) 2.333) = ) = P ( X 200) ) P (N(0, 1) / 49 ) Page 1/4
2 3 (3 points) Suppose that the distribution of a population X has the probability mass function as follows X 0 1 p(x) 1 p p where p is unknown. We have a sample from this distribution with the following observations: (3.1). (1p) Find a point estimate ˆp MM of p using Method of Moments. (3.2). (2p) Find a point estimate ˆp ML of p using Maximum-Likelihood method. (Hint: P (X = x) = p x (1 p) 1 x ) Solution. (3.1). For Method of Moments, the first equation is E(X) = X. The mean E(X) can be calculated as E(X) = 0 (1 p) + 1 p = p. By solving E(X) = X, we have p = X which yields ˆp MM = X. From the data, x = = 2/3, thus ˆp MM = 2 3. (3.2). For the Maximum-Likelihood method, we write the likelihood function as Maximizing L(p) is equivalent to maximize ln L(p) where By d ln L(p) dp = 0, we have Xi p (The second derivative d2 ln L(p) dp 2 L(p) = f(x 1 ) f(x 2 )... f(x n ) = p X i (1 p) (1 X i). ln L(p) = X i ln p + (1 X i ) ln(1 p). (1 Xi) 1 p = 0, therefore ˆp ML = Xi n = X. From the data ˆp ML = 2 3. < 0 which yields that ˆp ML is indeed a maximal point) 4 (3 points) A certain proportion of the antibiotics that are injected into the blood is bound to serum proteins. This phenomenon directly affects the effectiveness of the medication, because the absorption of the specimen decreases. In the table below there are specified proportions (unit: percent) for two common antibiotics that are bound to the experimental animal serum. Preparat Measured values x i s i Penicillin G Erythromycin Model: We have two independent samples from N(µ i, σ 2 ), namely, Penicillin G from N(µ 1, σ 2 ), and Erythromycin from N(µ 2, σ 2 ). (4.1). (1p) Construct a (two-sided) 95% confidence interval for µ 1. (4.2). (1p) Construct a (two-sided) 95% confidence interval for µ 2. (4.3). (1p) Compare parameters µ 1 and µ 2 by constructing an appropriate 99% confidence interval. Solution. (4.1). Since population variance σ 2 is unknown, the confidence interval of µ 1 is x 1 ± t α/2 (n 1 1) s 1 n1 = ± = ± = ( , ). (4.2). Since population variance σ 2 is unknown, the confidence interval of µ 2 is x 2 ± t α/2 (n 2 1) s 2 n2 = ± = ± = ( , ). (4.3). We compare µ 1 and µ 2 by constructing a 99% confidence interval of µ 1 µ 2, that is 1 ( x 1 x 2 ) ± t α/2 (n 1 + n 2 2) s = ( ) ± n 1 n = 9.52 ± = (2.668, ). 4 where s 2 = (n1 1)s2 1 +(n2 1)s = and s = s 2 = = From this confidence interval we can say that µ 1 > µ 2 since both and are > 0. n 1 1+n 2 1 = Page 2/4
3 5 (3 points) The minimal daily demand on zinc of a male person over 30 years of age is 15 mg. A scientist conjectures that the expected value is lower and wants to conduct a study in order to show that. Assume that the scientist measures the zinc intake of 25 randomly selected male person over 30 years of age and uses these data in order to test the hypotheses H 0 : µ = 15 versus H 1 : µ < 15. Assume that the observations are independent and from a population N(µ, σ 2 ). The sample mean is x = 13 and the sample standard deviation is s = 6. (5.1). (1.5p) If σ is unknown, do you reject H 0 given a significance level α = 0.01? and why? (5.2). (1.5p) If σ is known σ = 4, do you reject H 0 given a significance level α = 0.01? and why? Solution. (5.1) Since σ is unknown, the rejection region is (, t α (n 1)) = (, t 0.01 (25 1)) = (, 2.49). The test statistic is x µ0 s/ n = / = Because the test statistic is NOT in the rejection region, we do NOT 25 reject H 0. (5.2) Since σ is known σ = 4, the rejection region is (, z α ) = (, z 0.01 ) = (, 2.325). The test statistic is x µ0 σ/ n = / 25 = 2.5. Because the test statistic is in the rejection region, we reject H 0. 6 (3 points) In a scientific paper measurements of the thermal conductivity of polymer melts under Short-hot-wire method were reported. The measurements are thermal conductivity y and temperature x (unit: 1000 o C), and data are analyzed according to the models Model 1: Y = β 0 + β 1x + ε Model 2: Y = β 0 + β 1 x + β 2 x 2 + ε where ε and ε are assumed to be Normal distributions. Analyses from Minitab are Modell 1. Regression Analysis: y versus x y = x Constant x S = R-Sq = 8.9% R-Sq(adj) = 2.4% Regression Residual Error Total Residuals from y vs x Modell 2. Regression Analysis: y versus x, x^2 y = x x^2 Constant x Page 3/4
4 x^ S = R-Sq = 93.4% R-Sq(adj) = 92.4% Regression Residual Error Total Source DF Seq SS x x^ (6.1). (1p) How does the analysis indicate that Model 1 works very poorly? Explain your answer using an appropriate numerical value from the analysis. (6.2). (2p) Is the term x 2 useful as an explanatory variable i Modell 2? Explain your answer using an appropriate 95% confidence interval or test. Solution. (6.1). We see that in Model 1 the R-Sq = 8.9% which is too low. R-Sq describes the proportion of variation due to x. A low R-Sq means that x explains y little. So Model 1 works very poorly. (6.2). Yes, it is. We can see this by constructing a (two-sided) 95% confidence interval of the coefficient β 2 of x 2, which is ˆβ 2 ± t (16 2 1) se(β 2 ) = ± = ± = ( , 1.735). Since 0 is not in this confidence interval, we believe β 2 0. Therefore x 2 is useful as an explanatory variable. Page 4/4
5 Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 augusti 2014, kl Examinator/Examiner: Xiangfeng Yang (Tel: ) a. Tillåtna hjälpmedel är en räknare, formel -och tabellsamling utgiven av MAI. Vänligen svara på ENGELSKA om du kan. b. Betygsgränser: 8-11 poäng ger betyg 3; poäng ger betyg 4; poäng ger betyg 5. 1 (3 poäng) Svensk version Livslägden (i timmar) hos en viss typ av radiorör antas vara en kontinuerlig stokastisk variabel X med täthetsfunktionen { 100/x 2, om x > 100, f X (x) = 0, annars. (1.1). (1p) Bestäm sannolikheten för att ett sådant rör fungerar mindre än 200 timmar. (1.2). (1p) Bestäm sannolikheten för att ett sådant rör fortfarande fungerar efter 150 timmar. (1.3). (1p) Bestäm sannolikheten för att ett sådant rör fungerar mindre än 200 timmar, givet att röret fortfarande fungerar efter 150 timmar. 2 (3 poäng) En stor varuhiss kan transportera högst 9800 kg. Antag att en last med 49 lådor måste transporteras via hissen. Om vi vet vikten av en låda av denna typ är en fördelning med väntevärdet µ = 205 kg och standardavvikelsen σ = 15 kg. Baserat på denna information, vad är sannolikheten att alla 49 lådor säkert kan lastas på hissen och transporteras? 3 (3 poäng) Antag att fördelningen för en population X har sannolikhetsfunktionen enligt följande X 0 1 p(x) 1 p p där p är okänd. Vi har ett stickprov från denna fördelning med observerade värden: (3.1). (1p) Hitta en punktskattning ˆp MM av p genom att använda momentmetoden. (3.2). (2p) Hitta en punktskattning ˆp ML av p genom att använda Maximum Likelihood-metoden. (Ledning: P (X = x) = p x (1 p) 1 x ) 4 (3 poäng) En viss andel av antibiotika som injiceras i blodet binds till serumproteiner. Detta fenomen påverkar direkt effektiviteten i medicineringen, eftersom upptagningen av preparatet minskar. I tabellen nedan anges för två vanliga antibiotikapreparat hur stor andel (enhet: procent) som binds vid försök med djurserum. Preparat Uppmätta värden x i s i Penicillin G Erythromycin Page 1/3
6 Modell: Vi har två oberoende stickprov från N(µ i, σ 2 ), dvs, Penicillin G från N(µ 1, σ 2 ), och Erythromycin från N(µ 2, σ 2 ). (4.1). (1p) Konstruera ett (tvåsidiga) 95% konfidensintervall för µ 1. (4.2). (1p) Konstruera ett (tvåsidiga) 95% konfidensintervall för µ 2. (4.3). (1p) Jämför parametrarna µ 1 och µ 2 genom att beräkna ett lämpligt 99% konfidensintervall. 5 (3 poäng) Minsta dagliga behov av zink är 15 mg för män över 30 år. I själva verket misstänker man att det förväntade värdet är lägre och man will genomföra en studie för att påvisa detta. Antag att man mäter zinkintaget för 25 slumpmässigt utvalda män över 30 år och använder data för att testa hypoteserna H 0 : µ = 15 versus H 1 : µ < 15. Antag att observationerna är oberoende och från en population N(µ, σ 2 ). Stickprovsmedelvärdet är x = 13 och stickprovsstandardavvikelsen är s = 6. (5.1). (1.5p) Om σ är okänd, förkastar du H 0 givet en signifikansnivån α = 0.01? Varför? (5.2). (1.5p) Om σ är känd σ = 4, förkastar du H 0 givet en signifikansnivån α = 0.01? Varför? 6 (3 poäng) I en vetenskaplig artikel redovisas mätresultat på värmeledningsförmågan för polymersmältor enligt short-hot-wire -metoden. Man har fått värden på värmeledning y och temperatur x (enhet: 1000 o C), och data har analyserats enligt modellerna Modell 1: Y = β 0 + β 1x + ε Modell 2: Y = β 0 + β 1 x + β 2 x 2 + ε där ε och ε antas vara normalfördelade. Analyserna från Minitab är Modell 1. Regression Analysis: y versus x y = x Constant x S = R-Sq = 8.9% R-Sq(adj) = 2.4% Regression Residual Error Total Residuals from y vs x Page 2/3
7 Modell 2. Regression Analysis: y versus x, x^2 y = x x^2 Constant x x^ S = R-Sq = 93.4% R-Sq(adj) = 92.4% Regression Residual Error Total Source DF Seq SS x x^ (6.1). (1p) Hur framgår det av analysen att Modell 1 fungerar väldigt dåligt? Motivera ditt svar med hjälp av ett lämpligt siffervärde ur analysen. (6.2). (2p) Gör x 2 nytta som förklaringsvariabel i Modell 2? Motivera ditt svar med hjälp av ett lämpligt 95% konfidensintervall eller test. Page 3/3
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
Läs merKurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN 6 January 205, 8:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the
Läs merKurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version
Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Läs merKurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the
Läs merEnglish Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =
TAMS11: Probability and Statistics Provkod: TENB 11 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merKurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
Läs merKurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merEnglish Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merKurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon. English Version
Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk
Läs merEnglish Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN1 2017-01-03 14:00-18:00 Examinator/Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merThis exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Läs merKurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version
Kurskod: TAMS Provkod: TENB 2 June 204, 4:00-8:00 Exmintor/Exminer: Xingfeng Yng (Tel: 070 2234765). You re permitted to bring: clcultor; formel -och tbellsmling i mtemtisk sttistik (from MAI); TAMS :
Läs merEnglish Version. + 1 n 2. n 1
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Läs merTentamen i matematisk statistik
Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs merEn scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:
1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merMetod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
Läs merExam MVE265 Mathematical Statistics,
Exam MVE65 Mathematical Statistics, 016-05-31 The exam consists of eight exercises with a total of 50 points. You need as least 0 points to get a 3, at least 30 points for a 4 and at least 40 points for
Läs mer7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
Läs merKroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde
Läs merTentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
Läs merLÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Läs merStatistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-10-29 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Mykola
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Läs merMiniräknare. Betygsgränser: Maximal poäng är 24. För betyget godkänd krävs 12 poäng och för betyget väl godkänd krävs 18 poäng.
UMEÅ UNIVERSITET Institutionen för matematisk statistisk Statistiska metoder, poäng TENTAMEN -8 Per Arnqvist TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, poäng Tillåtna hjälpmedel: Kursboken med
Läs merGrundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4.
Grundläggande Statistik och Försöksplanering Provmoment: TEN1 & TEN2 Ladokkod: TT2311 Tentamen ges för: Bt2, En2, Bt4, En4 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student)
Läs merEnkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
Läs mer8.1 General factorial experiments
Exempel: Vid ett tillfälle ville man på ett laboratorium jämföra fyra olika metoder att bestämma kopparhalten i malmprover. Man är även intresserad av hur laboratoriets tre laboranter genomför sina uppgifter.
Läs merF ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Läs merExaminationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Läs merTentamen i matematisk statistik
Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs
Läs merTENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik Regressions- och variansanalys, 5 poäng MSTA35 Leif Nilsson TENTAMEN 2003-01-10 TENTAMEN I MATEMATISK STATISTIK Regressions- och variansanalys, 5
Läs merRäkneövning 3 Variansanalys
Räkneövning 3 Variansanalys Uppgift 1 Fyra sorter av majshybrider har utvecklats för att bli resistenta mot en svampinfektion. Nu vill man också studera deras produktionsegenskaper. Varje hybrid planteras
Läs merChapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Läs merStatistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
Läs merLö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merDatorövning Power curve 0,0305 0, Kvantiler, kritiska regioner
. Kvantiler, kritiska regioner Datorövning Räkna ut följande rejection regions (genom att rita täthetsfunktionen i Minitab ):. z-fördelning, tvåsidigt, 5% signifikansnivå. z-fördelning, lower tail, 5%
Läs mer4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde
Läs mer10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
Läs merLösningar till SPSS-övning: Analytisk statistik
UMEÅ UNIVERSITET Statistiska institutionen 2006--28 Lösningar till SPSS-övning: Analytisk statistik Test av skillnad i medelvärden mellan två grupper Uppgift Testa om det är någon skillnad i medelvikt
Läs merSannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 29 mars, 2008 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,
Läs mer12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
Läs merStatistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
Läs merMVE051/MSG810 Matematisk statistik och diskret matematik
Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merMVE051/MSG810 Matematisk statistik och diskret matematik
Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:
Läs merTentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2015-01-13 Tentamen Tillämpad statistik A5 (15hp) 2015-01-13 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Läs merS0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula
Mykola Shykula LTU Mykola Shykula (LTU) 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Mykola Shykula (LTU) 2 / 18 Stokastiska
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2012-10-30 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
Läs merHögskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs mer7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merRegressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Läs merI vår laboration kom vi fram till att kroppstemperaturen påverkar hjärtfrekvensen enligt
Introduktion Vi har fått ta del av 13 mätningar av kroppstemperatur och hjärtfrekvens, varav på hälften män, hälften kvinnor, samt en studie på 77 olika flingsorters hyllplaceringar och sockerhalter. Vi
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Läs merS0005M, Föreläsning 2
S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-01-17 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 15.00 20.00 Lärare: Adam Jonsson, Mykola
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merTentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:
Läs merTAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära
TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
Läs merAvd. Matematisk statistik
Avd. Matematisk statistik EXAM IN 5B50 SANNOLIKHETSTEORI OCH STATISTIK I TUESDAY DECEMBER 20, 2005 08.00AM 0.00PM. Examiner: Dan Mattsson, tel. 790 735. Permissible aids : Formel- och tabellsamling i Matematisk
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2018-01-12 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 9.00 14.00 Lärare: Mykola Shykula, Niklas
Läs mer732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Läs merExempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 83 3 (tåg) 9 3 (tåg) 93 (flyg) 97 7 (flyg) 9 (flyg) 99 (raket) Fitted Line Plot Hastighet
Läs merSkrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2014-10-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: A. Jonsson, M. Shykula,
Läs merLINKÖPINGS UNIVERSITET Matematiska Institutionen Matematisk Statistik HT TAMS24
LINKÖPINGS UNIVERSITET Matematiska Institutionen Matematisk Statistik HT1-2015 TAMS24 1. Mean and standard deviation 5.7) Calculate E [ e X] if f X (x) = 2e 2x, x 0. 5.12) The r.v. X has density function
Läs merTentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Läs merModule 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod SM Poäng totalt för del : 5 (9 uppgifter) Tentamensdatum -3-3 Poäng totalt för del : 3 (3 uppgifter) Skrivtid 9. 4. Lärare: Adam Jonsson och Inge Söderkvist Jourhavande
Läs mer732G71 Statistik B. Föreläsning 3. Bertil Wegmann. November 4, IDA, Linköpings universitet
732G71 Statistik B Föreläsning 3 Bertil Wegmann IDA, Linköpings universitet November 4, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 4, 2015 1 / 22 Kap. 4.8, interaktionsvariabler Ibland
Läs mer1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Läs merLUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Läs merRegressions- och Tidsserieanalys - F1
Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp
Läs merDatorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:
Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,
Läs merTentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (10 uppgifter) Tentamensdatum 2013-03-28 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson Jourhavande
Läs merTentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
Läs mer732G71 Statistik B. Föreläsning 1, kap Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20
732G71 Statistik B Föreläsning 1, kap. 3.1-3.7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 20 Exempel, enkel linjär regressionsanalys Ett företag vill veta
Läs merTentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Läs merModule 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Läs merTillåtna hjälpmedel: Räknedosa. Formel- och tabellsamling i matematisk statistik.
UPPSALA UNIVERSITET Matematiska institutionen Erik Broman, Jesper Rydén TENTAMEN I MATEMATISK STATISTIK Sannolikhet och statistik 1MS5 214-1-11 Skrivtid: 8.-13.. För betygen 3, 4 resp. 5 krävs 18, 25 resp.
Läs merTentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Läs merTAMS65 - Föreläsning 8 Test av fördelning χ 2 -test
TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö8
Läs mer