English Version. + 1 n 2. n 1

Storlek: px
Starta visningen från sidan:

Download "English Version. + 1 n 2. n 1"

Transkript

1 Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: ). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik (from MAI); TAMS24: Notations and Formulas (by Xiangfeng Yang) b. Scores rating: 8- points giving rate 3; points giving rate 4; 5-8 points giving rate 5.. (3 points) English English Version Independent samples of very pure iron made by two different methods, A and B, gave the following melting points: A B Assume that we have independent observations x,..., x 9 from N(µ, σ) for A, and y,..., y 6 from N(µ 2, σ) for B. Construct a (two-sided) 95% confidence interval for µ µ 2. Solution. The confidence interval is I µ µ 2 = ( x ȳ) t α/2 (n + n 2 2) s + n n 2 where and Therefore, x = 507., ȳ = , n = 9, n 2 = 6, t α/2 (n + n 2 2) = 2.6 s 2 = (n )s 2 + (n 2 )s 2 2 n + n 2 2 = (9 ).92 + (6 ) I µ µ 2 = ( x ȳ) t α/2 (n + n 2 2) s = = 38.9, so s =.8. n + n 2 = = ( 5.5, 2.). 2. (3 points) English During the study of accuracy, one often makes measurements on objects with different methods. Then one studies the difference for each pair of measurements and then obtains observations y i of independent random variables Y i N(0, σ 2), where σ is the standard deviation of one measurement error. Let y,..., y n be those observed values. Find the Maximum-Likelihood estimate of σ based on y,..., y n, and check if the corresponding σ 2 -estimator is unbiased. Solution. Part : The likelihood function is L(σ) = n e 2π 2σ y 2 i 2( 2σ) 2 = n e y 2π 2σ 2 i 4σ 2 = ( ) n σ n e n 2π 2 y 2 i 4σ 2. Thus the logarithmic likelihood function is ( ) ln L(σ) = n ln 2π 2 n ln(σ) 4σ 2 yi 2. Page /5

2 The first derivative gives 0 = ln L(σ) = n σ + 2σ 3 y 2 i σ 2 = yi 2 σ = yi 2. The second derivative test shows that such σ is indeed a maximal value of ln L(σ). Therefore, the Maximum-Likelihood estimate of σ is ˆσ ML = yi 2. Part 2: Is ˆσ 2 = n y2 i unbiased? So, it is unbiased. E(ˆσ 2 ) = E( Y 2 i ) = E(Y 2 i ) = V (Y i ) = 2σ 2 = σ2 = σ (3 points) English Let the random variables X, X 2 and X 3 be independent and N(0, 2), where 2 is the standard deviation. Consider (3.). (p) Find the mean E(Y ) and the variance V (Y ). (3.2). (2p) Find P (Y > Y 2 ). Solution. (3.). Y = 3 (X + X 2 + X 3 ), Y 2 = 3X + X 2 2X 3. E(Y ) = E 3 (X + X 2 + X 3 ) = 3 E(X + X 2 + X 3 ) = 3 (E(X ) + E(X 2 ) + E(X 3 )) = ( ) = 0. 3 V (Y ) = V 3 (X + X 2 + X 3 ) = 3 2 V (X + X 2 + X 3 ) = 3 2 (V (X ) + V (X 2 ) + V (X 3 )) = 3 2 ( ) = 2/9 = 4/3. (3.2). P (Y > Y 2 ) = P ( 3 (X + X 2 + X 3 ) > 3X + X 2 2X 3 ) = P (X + X 2 + X 3 > 9X + 3X 2 6X 3 ) = P (8X + 2X 2 7X 3 < 0) = (similarly as in (3.)) = P (N(30, 2.6) < 0) = P (N(0, ) < 30/2.6) = P (N(0, ) <.39) = = (3 points) English One way to measure the radon concentration in the indoor air is to hang up the film which is sensitive to alpha particles. When the film is met by a particle, then in the film a hole Y will occur which is a Poisson random variable with a mean proportional to the randon concentration λ. Let y = 27 be an observation of Y P o(kλ), where k = 0. is the current measurement situation. (4.). (p) With a significance level 5%, reject H 0? H 0 : λ = 200 Bq/m 3 mot H : λ > 200 Bq/m 3 (4.2). (2p) Find the power for the test when the real λ = 250. Page 2/5

3 Solution. (4.). In this case, the Normal approximation gives (the help variable) Y P o(kλ) N(kλ, kλ) Y kλ kλ N(0, ). Thus we know T S = y kλ = =.56; C = (λ α, + ) = (.645, + ). kλ Since T S / C, don t reject H 0. (4.2). P ower = P (reject H 0 when H 0 is false and λ = 250) = P (T S C, λ = 250) = P (Y > , λ = 250) = P ( Y kλ kλ = P (N(0, ) > ) = > kλ kλ, λ = 250) 5. (3 points) English One has studied the resistance of cylinders made of a cement-like material based on fly ash. Tests have been conducted for various concentrations of ammonium phosphate. Analyses were carried out for two different models: Model : Y = β 0 + β x + β 2 x 2 + ε, ε N(0, σ), Model 2: Z = β 0 + β x + β 2 ln(x + ) + ε, ε N(0, σ), Z = ln(y ). Matlab analysis for Model is: Estimated regression line y = x 76.7x Degrees of freedom Sum of squares REGR RES TOT Matlab analysis for Model 2 is: Estimated regression line ln(y ) = x ln(x + ) Degrees of freedom Sum of squares REGR RES TOT (X X) = (5.). (p) Why does Model 2 work better than Model? (5.2). (p) Is the second variable ln(x + ) really needed in Model 2? Answer this with the help of an appropriate test or confidence interval with a level 5%. (5.3). (p) Construct a 95% confidence interval for the mean µ 0 = E(Z) in Model 2 when x = 2. Solution. (5.). We compare the R 2 for Model and Model 2. Model : R 2 = SS R SS T OT = = 0.867; Model 2: R 2 = SS R SS T OT = = R 2 in Model 2 is larger than R 2 in Model, thus Model 2 works better than Model. Page 3/5

4 (5.2). Method : We can construct a confidence interval for β 2 as follows I β2 = ˆβ 2 t α/2 (n k ) s h 22 = ˆβ 2 t α/2 (n k ) d( ˆβ 2 ) = = (0.77, 0.99). Since 0 / I β2, we think β 2 0. Namely, the second variable ln(x + ) is really needed in Model 2. Method 2 : We can also solve this problem using Hypothesis test as follows: Then we can easily find T S = ˆβ 2 0 d( ˆβ 2 ) H 0 : β 2 = 0, H : β 2 0. = / = 7, C = (, 2.3) (2.3, + ). Since T S C, reject H 0. So we think β 2 0, namely, the second variable ln(x + ) is really needed in Model 2. (5.3). In this case, x = (, 2, ln(3)), and the confidence interval is I µ0 = ˆµ t α/2 (n k ) s x (X X) x, where Therefore, ˆµ = x ˆβ = , s 2 = SS E n k = = s = , 5 x (X X) x = I µ0 = ˆµ t α/2 (n k ) s x (X X) x = (7.428, 7.480). 6. (3 points) English Three suppliers provide a factory with details of the production of a certain product. At delivery, the control selects randomly selected units from each supplier and classify them as flawless (A), slightly defective (B) and inoperable (C). Latest results in terms of the number of devices found in different classes were: suppliers Class A Class B Class C Based on these data, can we know that if there are quality differences between the three suppliers? Answer this using an appropriate test with a significance level 5%. Solution. H 0 : there are NOT quality differences between the three suppliers; H : there are quality differences between the three suppliers;. help variable is : k r (N ij np ij) 2 j= np ij χ 2 ((r )(k )); TS = k r (N ij np ij) 2 j= np ij ; C = ( χ 2 α((r )(k )), + ), Page 4/5

5 where r = 3, k = 3, where Based on these, we get N ij can be obtained directly from the table, for example N = 89, N 2 = 3,..., N 33 = 3; p = , p 2 = q = T S = 8.46, p ij = p i q j, , q 2 = C = (9.49, + )., p 3 = ;, q 3 = Since T S / C, don t reject H 0. Namely, there may not be quality differences between the three suppliers. Page 5/5

6 . (3 poäng) Svenska Svensk Version Oberoende stickprov av mycket rent järn berett med olika metoder, A och B, gav följande smältpunkter: A B Anta att vi har oberoende observationer x,..., x 9 från N(µ, σ) för A, och y,..., y 6 från N(µ 2, σ) för B. Konstruera ett (två-sidigt) 95% konfidensintervall för µ µ (3 poäng) Svenska Ofta då man studerar mätnoggrannhet gör man dubblemätningar på föremål med olika egenskaper. Seden bildar man för varje par av mätningar differensen mellan mätvärdena och får då observationer y i av oberoende stokastiska variabler Y i N(0, σ 2), där σ är standardavvikelsen för ett mätfel. Låt y,..., y n vara sådana observerad värden. Härled Maximum-Likelihood skattningen av σ baserad på y,..., y n och undersök om motsvarande σ 2 -skattning är väntevärdesriktig. 3. (3 poäng) Svenska De stokastiska variablerna X, X 2 och X 3 är oberoende och N(0, 2), där 2 är standardavvikelsen. Betrakta (3.). (p) Bestäm väntevärdet E(Y ) och variansen V (Y ). (3.2). (2p) Beräkna P (Y > Y 2 ). 4. (3 poäng) Svenska Y = 3 (X + X 2 + X 3 ), Y 2 = 3X + X 2 2X 3. Ett sätt att mätta randonkoncentrationen i inomhusluft är att hänga upp film känslig för alfapartiklar. När filmen träffas av en partikel uppstår efter framkallning ett hål Y i en film är Poissonfördelat med ett väntevärde som är proportionellt mot randonkoncentrationen λ. Låt y = 27 vara en observation av Y P o(kλ), där k = 0. för den aktuella mätsituationen. (4.). (p) Med signifikansnivå 5%, förkasta H 0? (4.2). (2p) Bestäm styrkan för testet om λ = (3 poäng) Svenska H 0 : λ = 200 Bq/m 3 mot H : λ > 200 Bq/m 3 Man har studerat hållfastheten hos cylindrar tillverkade av ett cementliknande material baserat på flygaska. Försök har genomförts för olika halter av ammoniumfosfat. Analyser har genomförts för två olika modeller: Modell : Y = β 0 + β x + β 2 x 2 + ε, ε N(0, σ), Modell 2: Z = β 0 + β x + β 2 ln(x + ) + ε, ε N(0, σ), Z = ln(y ). Matlabanalys för Modell är: Skattad regressionslinje y = x 76.7x Frihetsgrader Kvadratsumma REGR RES TOT Page /2

7 Matlabanalys för Modell 2 är: Skattad regressionslinje ln(y ) = x ln(x + ) Frihetsgrader Kvadratsumma REGR RES TOT (X X) = (5.). (p) Hur framgår det av analyserna att Modell 2 fungerar bättre än Modell? (5.2). (p) Behövs den andra förklaringsvariabeln ln(x + ) i Modell 2? Motivera ditt svar med hjälp av lämpliga test eller konfidensintervall med en nivå 5%. (5.3). (p) Konstruera utgående från analysen för Modell 2 ett 95% konfidensintervall för väntevärdet µ 0 = E(Z) då x = (3 poäng) Svenska Tre leverantörer förser en fabrik med detaljer för tilverkning av en viss produkt. Vid leveranskontrollen väljer man slumpmässigt ut enheter från varje leverantör och klasar dem som felfria (A), något defekta (B) och oanvändbara (C). Resultatet vid den senaste kontrollen vad gäller antalet funna enheter i olika klasser blev: Leverantör Klass A Klass B Klass C Kan vi med utgångspunkt från dessa data påstå att det finns kvalitetsskillnader mellan de tre leverantörerna? Genomför ett lämpligt test på signifikansnivå 5%. Page 2/2

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and

Läs mer

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling

Läs mer

English Version. Number of sold cakes Number of days

English Version. Number of sold cakes Number of days Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = = TAMS11: Probability and Statistics Provkod: TENB 11 June 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel

Läs mer

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version Kurskod: TAMS Provkod: TENB 2 January 205, 08:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists

Läs mer

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling

Läs mer

English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =

English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 = Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN1 2017-01-03 14:00-18:00 Examinator/Examiner: Zhenxia Liu (Tel: 070 0895208). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, 14-18 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring a calculator, the formula and table collection

Läs mer

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN 6 January 205, 8:00-2:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the

Läs mer

Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon. English Version

Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon. English Version Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Chapter 2: Random Variables

Chapter 2: Random Variables Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,

Läs mer

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number: Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel

Läs mer

Exam MVE265 Mathematical Statistics,

Exam MVE265 Mathematical Statistics, Exam MVE65 Mathematical Statistics, 016-05-31 The exam consists of eight exercises with a total of 50 points. You need as least 0 points to get a 3, at least 30 points for a 4 and at least 40 points for

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 01 June 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 2015-08-18 kl. 8.30-13.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 031-7723546 Hjälpmedel:

Läs mer

Kurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version

Kurskod: TAMS11 Provkod: TENB 12 June 2014, 14:00-18:00. English Version Kurskod: TAMS Provkod: TENB 2 June 204, 4:00-8:00 Exmintor/Exminer: Xingfeng Yng (Tel: 070 2234765). You re permitted to bring: clcultor; formel -och tbellsmling i mtemtisk sttistik (from MAI); TAMS :

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 28:E OKTOBER 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66, Björn Olof Skytt 08-790 86 49. Tillåtna

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:

Läs mer

MVE051/MSG810 Matematisk statistik och diskret matematik

MVE051/MSG810 Matematisk statistik och diskret matematik Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:

Läs mer

Isolda Purchase - EDI

Isolda Purchase - EDI Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language

Läs mer

Tentamen MVE300 Sannolikhet, statistik och risk

Tentamen MVE300 Sannolikhet, statistik och risk Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser: 1 Uppgiftsbeskrivning Syftet med denna laboration var att utifrån uppmätt data avgöra: (i) Om något samband finnes mellan kroppstemperatur och hjärtfrekvens. (ii) Om någon signifikant skillnad i sockerhalt

Läs mer

12.6 Heat equation, Wave equation

12.6 Heat equation, Wave equation 12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik EXAM IN 5B50 SANNOLIKHETSTEORI OCH STATISTIK I TUESDAY DECEMBER 20, 2005 08.00AM 0.00PM. Examiner: Dan Mattsson, tel. 790 735. Permissible aids : Formel- och tabellsamling i Matematisk

Läs mer

Module 6: Integrals and applications

Module 6: Integrals and applications Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important

Läs mer

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder

TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-06-01 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p) UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant

Läs mer

TAMS65 - Seminarium 4 Regressionsanalys

TAMS65 - Seminarium 4 Regressionsanalys TAMS65 - Seminarium 4 Regressionsanalys Martin Singull Matematisk statistik Matematiska institutionen Problem 1 PS29 Vid ett test av bromsarna på en bil bromsades bilen upprepade gånger från en hastighet

Läs mer

MVE051/MSG810 Matematisk statistik och diskret matematik

MVE051/MSG810 Matematisk statistik och diskret matematik Nancy Abdallah Chalmers tekniska högskola - Göteborgs universitet Datum: 190607 kl. 14.00 18.00 Tentamen Telefonvakt: Andreas Petersson 5325 MVE051/MSG810 Matematisk statistik och diskret matematik Hjälpmedel:

Läs mer

Statistik för teknologer, 5 poäng Skrivtid:

Statistik för teknologer, 5 poäng Skrivtid: UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE30 Sannolikhet, statistik och risk 207-08-5 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 03-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-5-31 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

LINKÖPINGS UNIVERSITET Matematiska Institutionen Matematisk Statistik HT TAMS24

LINKÖPINGS UNIVERSITET Matematiska Institutionen Matematisk Statistik HT TAMS24 LINKÖPINGS UNIVERSITET Matematiska Institutionen Matematisk Statistik HT1-2015 TAMS24 1. Mean and standard deviation 5.7) Calculate E [ e X] if f X (x) = 2e 2x, x 0. 5.12) The r.v. X has density function

Läs mer

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion

Uppgift 1 a) En kontinuerlig stokastisk variabel X har fördelningsfunktion Avd. Matematisk statistik TENTAMEN I 5B57 MATEMATISK STATISTIK FÖR T och M ONSDAGEN DEN 9 OKTOBER 25 KL 8. 3.. Examinator: Jan Enger, tel. 79 734. Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE30 Sannolikhet, statistik och risk 207-06-0 kl. 8:30-3:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 03-7725348 Hjälpmedel: Valfri miniräknare.

Läs mer

Isometries of the plane

Isometries of the plane Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för

Läs mer

0 om x < 0, F X (x) = c x. 1 om x 2.

0 om x < 0, F X (x) = c x. 1 om x 2. Avd. Matematisk statistik TENTAMEN I SF193 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH MÅNDAGEN DEN 16 AUGUSTI 1 KL 8. 13.. Examinator: Gunnar Englund, tel. 7974 16. Tillåtna hjälpmedel: Läroboken.

Läs mer

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p)

Bestäm med hjälp av en lämplig och välmotiverad approximation P (X > 50). (10 p) Avd. Matematisk statistik TENTAMEN I SF1901, SF1905, SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 17:E AUGUSTI 2015 KL 8.00 13.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel-

Läs mer

Tentamen i Matematik 2: M0030M.

Tentamen i Matematik 2: M0030M. Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMatematiska institutionen avd matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR B OCH K FREDAGEN DEN 11 JANUARI 2002 KL 14.00 19.00. Examinator: Gunnar

Läs mer

TAMS65 - Föreläsning 12 Test av fördelning

TAMS65 - Föreläsning 12 Test av fördelning TAMS65 - Föreläsning 12 Test av fördelning Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö12 1/37 Det

Läs mer

Lycka till!

Lycka till! Avd. Matematisk statistik TENTAMEN I 5B1503 STATISTIK MED FÖRSÖKSPLANERING FÖR K OCH B MÅNDAGEN DEN 25 AUGUSTI 2003 KL 14.00 19.00. Examinator: Gunnar Englund, 790 7416. Tillåtna hjälpmedel: Formel- och

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent)

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas

Läs mer

Examinationsuppgifter del 2

Examinationsuppgifter del 2 UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).

Läs mer

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:

Läs mer

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) = Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,

Läs mer

Lufttorkat trä Ugnstorkat trä

Lufttorkat trä Ugnstorkat trä Avd. Matematisk statistik TENTAMEN I SF1901 och SF1905 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 18:E OKTOBER 2012 KL 14.00 19.00. Examinator: Tatjana Pavlenko, tel 790 8466. Tillåtna hjälpmedel:

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 8:E JANUARI 2018 KL 14.00 19.00. Examinator: Thomas Önskog, 08 790 84 55. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:...

Del I. Uppgift 1 Låt A och B vara två oberoende händelser. Det gäller att P (A) = 0.4 och att P (B) = 0.3. Bestäm P (B A ). Svar:... Avd. Matematisk statistik EXEMPELTENTAMEN I SANNOLIKHETSTEORI OCH STATISTIK, Tillåtna hjälpmedel: Formel- och tabellsamling i Matematisk statistik (utdelas vid tentamen). Tentamen består av två delar,

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (9) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna

Läs mer

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:...

Del I. Uppgift 1 För händelserna A och B gäller att P (A) = 1/4, P (B A) = 1/3 och P (B A ) = 1/2. Beräkna P (A B). Svar:... Avd. Matematisk statistik TENTAMEN I SF9/SF94/SF95/SF96 SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 4:E OKTOBER 08 KL 8.00 3.00. Examinator för SF94/SF96: Tatjana Pavlenko, 08-790 84 66 Examinator för

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

Module 1: Functions, Limits, Continuity

Module 1: Functions, Limits, Continuity Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65

TAMS65. Formel- och tabellsamling i matematisk statistik TAMS65. Martin Singull TAMS65 TAMS65 Formel- och tabellsamling i matematisk statistik Martin Singull Innehåll 4.1 Multipel regression.............................. 15 1 Sannolikhetslära 7 1.1 Några diskreta fördelningar.........................

Läs mer

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Sannolikhetsteori. Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 5p. Tid: Lördag den 29 mars, 2008 kl 14.00-18.00 i V-huset. Examinator: Olle Nerman, tel 7723565. Jour: Alexandra Jauhiainen,

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF194 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAG 1 AUGUSTI 019 KL 8.00 13.00. Examinator: Björn-Olof Skytt, 08-790 86 49. Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 Avd. Matematisk statistik SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2010 0 Allmänna anvisningar Arbeta med handledningen, och skriv rapport, i grupper om två eller tre personer. Närvaro vid laborationstiden

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända

Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för: Datorövning 5 Statistisk teori med tillämpningar Hypotestest i SAS Syfte Lära sig beräkna konfidensintervall och utföra hypotestest för: 1. Populationsmedelvärdet, µ. 2. Skillnaden mellan två populationsmedelvärden,

Läs mer

TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test

TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test TAMS65 - Föreläsning 8 Test av fördelning χ 2 -test Martin Singull Matematisk statistik Matematiska institutionen Innehåll Grundläggande χ 2 -test Test av given fördelning Homogenitetstest TAMS65 - Fö8

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER OM χ 2 -TEST OCH LIKNANDE. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER OM χ 2 -TEST OCH LIKNANDE. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 13. MER OM χ 2 -TEST OCH LIKNANDE Jan Grandell & Timo Koski 25.02.2015 Jan Grandell & Timo Koski () Matematisk statistik 25.02.2015 1 / 33 INNEHÅLL χ

Läs mer

Styr- och kontrolldiagram ( )

Styr- och kontrolldiagram ( ) Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum

Läs mer

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL

TENTAMEN I SF2950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 2010 KL TENTAMEN I SF950 (F D 5B1550) TILLÄMPAD MATEMATISK STATISTIK, TORSDAGEN DEN 3 JUNI 010 KL 14.00 19.00 Examinator : Gunnar Englund, tel. 790 7416, epost: gunnare@math.kth.se Tillåtna hjälpmedel: Formel-

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER HYPOTESPRÖVNING. χ 2 -TEST. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 12. MER HYPOTESPRÖVNING. χ 2 -TEST Jan Grandell & Timo Koski 25.02.2016 Jan Grandell & Timo Koski Matematisk statistik 25.02.2016 1 / 46 INNEHÅLL Hypotesprövning

Läs mer

S0005M, Föreläsning 2

S0005M, Föreläsning 2 S0005M, Föreläsning 2 Mykola Shykula LTU Mykola Shykula (LTU) S0005M, Föreläsning 2 1 / 18 Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.

Läs mer