ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
|
|
- Ludvig Lundström
- för 6 år sedan
- Visningar:
Transkript
1 ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Sllabus Objective NV State Standard 1 Graph a polnomial function Analze graphs of polnomial functions to determine characteristics Graph quadratic functions. Identif the domain and range of linear, quadratic, or polnomial functions. Develop a mathematical model to solve real world problems. Organize data using matrices. Simplif matri epressions. Multiple Choice # Objective Sllabus Objective NV State Standard Practice Ke A/B 1 Differentiate among subsets of real number sstems C / Evaluate algebraic epressions A / 3 Simplif algebraic epressions D / 4 Solve linear equations C / 5 Solve for a given variable in a given equation with more than one variable D / Solve for a given variable in a given equation with more than one variable B / 7 Solve an absolute value equation or inequalit C / 8 Solve a compound inequalit A / 9 Applications of linear models B / 10 Differentiate between a relation and a function C / 11 Identif the domain and range of functions A / 1 Write the equation of a line C / 13 Write the equation of a line D / 14 Calculate the slope of a line D / 15 Recognize slope as a rate of change of one variable in terms of another C / 1 Use slopes to classif lines as parallel, perpendicular, or neither A / 17 Graph linear and absolute value equations and inequalities D / 18 Solve application problems using linear models and appling direct variation.1.1. A / 19 Define, graph, or evaluate piecewise functions B / 0 Solve sstem of equations D / 1 Solve sstem of equations C / Solve sstem of equations B / 3 Graph solution set of a sstem of inequalities A / 4 Solve application problems involving sstems of equations or inequalities B / 5 Solve application problems using linear programming C / Organize data using matrices B / Final Ke Page 1 of 3 Revised: 8/18/08 Clark Count School District
2 ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective Sllabus Objective NV State Standard Practice Ke A / B 7 Simplif matri epressions A /.1. 8 Simplif matri epressions B / Find the determinant of a matri C / Solve sstems using matrices D / Graph quadratic functions D / Solve quadratic equations C / Solve quadratic equations D / Solve quadratic equations C / Solve quadratic equations D / Analze the nature of the roots of a quadratic equation B / Solve quadratic equation with comple solutions A / 38 Perform operations with comple numbers B / Graph and solve quadratic inequalities D / Develop models involving quadratic equations to solve realworld problems B / 41 Graph a polnomial function D / 4 Graph a polnomial function A / 43 Simplif polnomial epressions B / Solve polnomial equations b factoring and graphing C / Solve polnomial equations b factoring and graphing C / Find rational zeros of a polnomial A / Final Ke Page of 3 Revised: 8/18/08 Clark Count School District
3 ALGEBRA II SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY Multiple Choice # Objective Sllabus Objective 47 Use the Fundamental Theorem of Algebra to determine the number of zeros. NV State Standard Practice Ke A / B D / 48 Divide polnomials A / 49 Analze graphs of polnomial functions to determine characteristics B / 50 Analze graphs of polnomial functions to determine characteristics B / Final Ke Page 3 of 3 Revised: 8/18/08 Clark Count School District
4 1. To which sets of numbers does 5 belong? I. integers II. natural numbers III. rational numbers IV. real numbers V. whole numbers II and IV onl III and IV onl I, III, and IV onl III, IV, and V onl. Evaluate b c = ac for a = 3, b = 1, and 3. Which is a simplified form of the epression 1( 1) ( 18)? What is the value of n if 9 n + = 5? n = 4 39 n = n = n = Below is the formula for the surface area of a right circular clinder. A = π rh + π r Which is a correct formula for the height, h, epressed in terms of radius, r, and surface area, A? π r A h = π r A h = π r π r h= A π r π r A h= r π r. Which represents in terms of for the equation 3 + = 5 +? = + = = 8 = GO ON
5 7. Rewrite the absolute value inequalit as a compound inequalit: + > < < 1 > 13 or < 1 < 13 or > 1 no solution 8. Which epresses all of the solutions for the compound inequalit below? ( z + 4) and z 3 z 8 z = 3 and z = 8 z 3 and z 8 no solution 9. In 000 the average price of a home in West Count was $95,000. B 007 the average price of a home was $13,000. Which of the following is a linear model for the price of a home, P, in West Count in terms of the ear, t? Let t = 0 correspond to 000. P= 13,000 4,000t P= 95, ,000t P= 13,000 8,000t P= 8, ,000t 10. Which relation is a function? = = {( 1, ), (3, ), ( 5, )} {(, 5), (, ), (, 1)} 11. What is the range of the following relation? {(,0),(1, 3),(5, )}? { 3,, 0} {, 1, 5} {0,, 3} { 5, 1, } 1. Write the standard form of the equation of the line that passes through the point (,) and is parallel to the line 5+ = 1. 5 = 8 5 = 1 5+ = 5+ = GO ON
6 13. Which equation describes the pattern in the table? = 3 4 = 3+ 4 = 4 3 = Use the graph below. 15. William is hiking in the hills. He began the hike at 10:00 a.m. at an elevation of,000 ft. He reached a peak of 4,000 ft. at :00 p.m. What is the average rate of change in Bill s elevation? 00 ft. per hour 50 ft. per hour 500 ft. per hour 1000 ft. per hour 1. Write an equation in standard form that is perpendicular to = 5 and goes through ( 10,3). + 5 = 5 5 = 5 5 = = 4 What is the slope of the line? GO ON
7 17. Graph the linear equation 9 7 = Joe s pa (P) varies directl with the square of the number of widgets (w) he produces. When he produces widgets, he is paid $1. How man widgets would he have to produce to make $144? Evaluate f ( 3) for the piecewise function f( ) = f ( 3) = 18 f ( 3) = 3 f ( 3) = 0 f ( 3) = 18, 0. 3, > 0 0. Solve the following linear sstem. (0, 4) (, 8) 5 = 8 5 = + 3 infinitel man solutions no solution GO ON
8 1. Find the -coordinate of the solution to the linear sstem. 3 4 = 1 + = no solution 3. Graph the sstem of inequalities What is the -coordinate of the solution to the following sstem of equations? z = 5 + 3z = z = GO ON
9 4. For one month of internet access, Southern Nevada Web charges $4.00 per hour with a base fee of $0.00. Silver State Internet does not charge a base fee, but charges $.00 per hour for internet access. How man hours of use will the costs for the two companies be the same? hours 10 hours 1 hours 4 hours 5. Using linear programming procedures, the equation C = 4+ 7 is to be maimized subject to the following constraints: The grid ma be used to sketch the feasible region What is the minimum value for the objective function? GO ON
10 . A school fundraiser sells different sizes of gift baskets with a varing assortment of books and pencils. A basic basket contains 3 books and 4 pencils. A big basket contains 7 books and 8 pencils. Books cost $5, and pencils cost $. Which of the following shows the use of matrices to find the total cost for each size of basket? = = = = 3 7. Which is the sum A + B, given that 9 3 A = and B = 4 3 7? Given A 0 1 = and find the product A not possible 9. Calculate the determinant Solve for and : ( 8,1) 3, , 3 4 ( 5,3 ) 1 4 B = 0 1, = GO ON
11 31. Which graph from a graphing calculator represents the function = 4( )? (Assume the scale on each graph is one unit per tick mark.) 3. Solve the equation factoring. = ± 9 = 9 = 9 no solution = 0 b 33. Which is the solution set for = 0, using the quadratic formula? , , , , Which are solutions for + 40= 0 when solved b completing the square? = 10 or = 4 = 10 or = 4 = 10 or = 4 = 10 or = GO ON
12 35. Which is the solution set of ( + 4) = 77? , , , , 38. Write the epression i 3+ 9i number in standard form i i i i as a comple 3. Use the discriminant to determine the number and tpes of solutions of the equation = 0. no real solutions, imaginar solutions 1 real solution, no imaginar solutions 1 real solution, 1 imaginar solution real solutions 37. What are the solutions of the quadratic equation = 4? 5+ i 3 =, 5+ i 73 =, = = 5 i 3 5 i i 3 =, 5+ i 73 =, = = 5 i 3 5 i GO ON
13 39. Which of the following screens from a graphing calculator represents 4? (Assume the scale on each graph is one unit per tick mark.) 40. For the scenario below, use the model h= 1t + v0t+ h0, where h = height (in feet), h 0 = initial height (in feet), v 0 = initial velocit (in feet per second), and t = time (in seconds). A cheerleading squad performs a stunt called a basket toss where a team member is thrown into the air and is caught moments later. During one performance, a cheerleader is thrown upward leaving her teammates hands feet above the ground with an initial vertical velocit of 15 feet per second. When the girl falls back, the team catches her at a height of 5 feet. How long was the cheerleader in the air? 1 1 second 1 second seconds seconds GO ON
14 41. Which graph represents the factored function f ( ) = ( 3)( + )? (Assume the scale on each graph is one unit per tick mark.) 4. Graph the polnomial function: 4 f( ) = GO ON
15 43. Multipl the following polnomials. ( + 4)( + + 4) 4. Which of the following represents the solution set of the polnomial equation below? Factor the polnomial completel. + + ( 1)( 1)( 9) ( 8) ( 3)( 3)( 1) ( + 1) ( 3)( + 3) f 3 ( ) = ,, 1 1,, { 0, 1, } 1,, 47. According to the Fundamental Theorem of Algebra, how man solutions does the 3 5 polnomial f ( ) = have? 45. Factor the polnomial equation ( + 3) ( )( + ) ( + 3)( 4 + 9) ( 3)( ) What is 3 divided b 5? GO ON
16 49. State the end behavior of the graph of f = as. ( ) 3 f( ) f( ) + f( ) 4 f( ) Which best represents the polnomial 4 3 function = 5? (Assume the scale on each graph is one unit per tick mark.)
17
18 Free Response 1. Let p( ) ( 3) ( 1) = +. Sketch the graph of p( ). Label all intercepts. Find another polnomial function, q( ), that has the same zeros as ( ) point ( 1,1). p and goes through the Eplain how to determine the end behaviors of a polnomial function GO ON
19 Free Response. Let ( ) f = Find the verte and the ais of smmetr. ( 0, 15) is a point on f ( ) parabola to find another point on = f ( ). =. Eplain how ou can use the smmetric properties of a Sketch the graph of = f ( ). Include and label at least 5 points on our graph including the verte and intercepts. Find the domain and range of f ( ) GO ON
20 Free Response 3. A baker chain displas prices in a 1 3matri and dail sales at its three stores in a 3 3 matri as shown below: Prices Cupcakes Cookies Cakes [ $ $1 $10 ] Number of Items Sold Store A Store B Store C Cupcakes Cookies Cakes 4 1 Find the product of the two matrices. Eplain what the product represents. How would ou find the total gross revenue from all three stores?
ALGEBRA I SEMESTER 1 EXAM ITEM SPECIFICATION SHEET & KEY
ALGEBRA I SEMESTER EXAM ITEM SPECIFICATION SHEET & KEY Constructed Response # Objective Syllabus Objective NV State Standard Identify and apply real number properties using variables, including distributive
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 9januari2015 Skrivtid:
Module 1: Functions, Limits, Continuity
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 1: Functions, Limits, Continuity This module includes Chapter P and 1 from Calculus by Adams and Essex and is taught in three lectures,
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 2012-03-24 kl 14.30-19.30 Hjälpmedel : Inga hjälpmedel
Pre-Test 1: M0030M - Linear Algebra.
Pre-Test : M3M - Linear Algebra. Test your knowledge on Linear Algebra for the course M3M by solving the problems in this test. It should not take you longer than 9 minutes. M3M Problem : Betrakta fyra
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 203-0-5 Skrivtid: 09:00 4:00 Antal uppgifter: 2 ( 30 poäng ). Examinator: Norbert Euler Tel: 0920-492878 Tillåtna hjälpmedel: Inga Betygsgränser: 4p 9p = 3; 20p 24p
Preschool Kindergarten
Preschool Kindergarten Objectives CCSS Reading: Foundational Skills RF.K.1.D: Recognize and name all upper- and lowercase letters of the alphabet. RF.K.3.A: Demonstrate basic knowledge of one-toone letter-sound
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
1. Find an equation for the line λ which is orthogonal to the plane
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-04-23
1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)
Tentamen i Programmeringsteori Institutionen for datorteknik Uppsala universitet 1996{08{14 Larare: Parosh A. A., M. Kindahl Plats: Polacksbacken Skrivtid: 9 15 Hjalpmedel: Inga Anvisningar: 1. Varje bevissteg
denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell
Kursen bedöms med betyg, 4, 5 eller underänd, där 5 är högsta betyg. För godänt betyg rävs minst 4 poäng från uppgifterna -7. Var och en av dessa sju uppgifter an ge maximalt poäng. För var och en av uppgifterna
12.6 Heat equation, Wave equation
12.6 Heat equation, 12.2-3 Wave equation Eugenia Malinnikova, NTNU September 26, 2017 1 Heat equation in higher dimensions The heat equation in higher dimensions (two or three) is u t ( = c 2 2 ) u x 2
and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna
Högsolan i Sövde (SK) Tentamen i matemati Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 l 4.-9. Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad. Ej ränedosa. Tentamen
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Styrteknik: Binära tal, talsystem och koder D3:1
Styrteknik: Binära tal, talsystem och koder D3:1 Digitala kursmoment D1 Boolesk algebra D2 Grundläggande logiska funktioner D3 Binära tal, talsystem och koder Styrteknik :Binära tal, talsystem och koder
1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA150 Vector Algebra, TEN1 Date: 2018-02-15
Support Manual HoistLocatel Electronic Locks
Support Manual HoistLocatel Electronic Locks 1. S70, Create a Terminating Card for Cards Terminating Card 2. Select the card you want to block, look among Card No. Then click on the single arrow pointing
x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
Module 6: Integrals and applications
Department of Mathematics SF65 Calculus Year 5/6 Module 6: Integrals and applications Sections 6. and 6.5 and Chapter 7 in Calculus by Adams and Essex. Three lectures, two tutorials and one seminar. Important
Chapter 2: Random Variables
Chapter 2: Random Variables Experiment: Procedure + Observations Observation is an outcome Assign a number to each outcome: Random variable 1 Three ways to get an rv: Random Variables The rv is the observation
Isometries of the plane
Isometries of the plane Mikael Forsberg August 23, 2011 Abstract Här följer del av ett dokument om Tesselering som jag skrivit för en annan kurs. Denna del handlar om isometrier och innehåller bevis för
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 5 June 217, 14:-18: Examiner: Zhenxia Liu (Tel: 7 89528). Please answer in ENGLISH if you can. a. You are allowed to use a calculator, the formula and
f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:
STORSEMINARIET 3. Amplitud. frekvens. frekvens uppgift 9.4 (cylindriskt rör)
STORSEMINARIET 1 uppgift SS1.1 A 320 g block oscillates with an amplitude of 15 cm at the end of a spring, k =6Nm -1.Attimet = 0, the displacement x = 7.5 cm and the velocity is positive, v > 0. Write
Analys och bedömning av företag och förvaltning. Omtentamen. Ladokkod: SAN023. Tentamen ges för: Namn: (Ifylles av student.
Analys och bedömning av företag och förvaltning Omtentamen Ladokkod: SAN023 Tentamen ges för: Namn: (Ifylles av student Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2014-02-17 Hjälpmedel: Lexikon
Information technology Open Document Format for Office Applications (OpenDocument) v1.0 (ISO/IEC 26300:2006, IDT) SWEDISH STANDARDS INSTITUTE
SVENSK STANDARD SS-ISO/IEC 26300:2008 Fastställd/Approved: 2008-06-17 Publicerad/Published: 2008-08-04 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 35.240.30 Information technology Open Document
Second handbook of research on mathematics teaching and learning (NCTM)
Second handbook of research on mathematics teaching and learning (NCTM) The effects of classroom mathematics teaching on students learning. (Hiebert & Grouws, 2007) Inledande observationer Undervisningens
Module 4 Applications of differentiation
Department of mathematics SF1625 Calculus 1 Year 2015/2016 Module 4 Applications of differentiation Chapter 4 of Calculus by Adams and Essex. Three lectures, two tutorials, one seminar. Important concepts.
Accomodations at Anfasteröd Gårdsvik, Ljungskile
Accomodations at Anfasteröd Gårdsvik, Ljungskile Anfasteröd Gårdsvik is a campsite and resort, located right by the sea and at the edge of the forest, south west of Ljungskile. We offer many sorts of accommodations
1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA11 Single Variable Calculus, TEN Date:
(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 07-03-
Tentamen i Matematik 2: M0030M.
Tentamen i Matematik 2: M0030M. Datum: 2010-01-12 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
Isolda Purchase - EDI
Isolda Purchase - EDI Document v 1.0 1 Table of Contents Table of Contents... 2 1 Introduction... 3 1.1 What is EDI?... 4 1.2 Sending and receiving documents... 4 1.3 File format... 4 1.3.1 XML (language
f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN2 Date:
Sammanfattning hydraulik
Sammanfattning hydraulik Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION 2 p V z H const. Quantity
2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1
MÄLARDALEN UNIVERSIY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINAION IN MAHEMAICS MAA15 Linear Algebra Date: 017-06-09 Write time:
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version
Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik
F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =
Problems for the Basic Course in Probability (Fall 00) Discrete Probability. Die A has 4 red and white faces, whereas die B has red and 4 white faces. A fair coin is flipped once. If it lands on heads,
Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers 12-24. Misi.se 2011 1
Discovering!!!!! ÅÄÖ EPISODE 6 Norrlänningar and numbers 12-24 Misi.se 2011 1 Dialogue SJs X2000* från Stockholm är försenat. Beräknad ankoms?d är nu 16:00. Försenat! Igen? Vad är klockan? Jag vet inte.
S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN Date:
Solutions to exam in SF1811 Optimization, June 3, 2014
Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and
INSTALLATION INSTRUCTIONS
INSTALLATION - REEIVER INSTALLATION INSTRUTIONS RT0 RF WIRELESS ROOM THERMOSTAT AND REEIVER MOUNTING OF WALL MOUTING PLATE - Unscrew the screws under the - Pack contains... Installation - Receiver... Mounting
Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg
Swedish adaptation of ISO TC 211 Quality principles The subject How to use international standards Linguistic differences Cultural differences Historical differences Conditions ISO 19100 series will become
Tentamen i matematik. Högskolan i Skövde
Högskolan i Skövde Tentamen i matematik Kurs: MA52G Matematisk analys MA23G Matematisk analys för ingenjörer Tentamensdag: 206-03-2 kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Om oss DET PERFEKTA KOMPLEMENTET THE PERFECT COMPLETION 04 EN BINZ ÄR PRECIS SÅ BRA SOM DU FÖRVÄNTAR DIG A BINZ IS JUST AS GOOD AS YOU THINK 05
Om oss Vi på Binz är glada att du är intresserad av vårt support-system för begravningsbilar. Sedan mer än 75 år tillverkar vi specialfordon i Lorch för de flesta olika användningsändamål, och detta enligt
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm
Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm Guldplätering kan aldrig helt stoppa genomträngningen av vätgas, men den får processen att gå långsammare. En tjock guldplätering
Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 207--06
BÄNKVÅG / BENCH SCALE Modell : SW-III / Model : SW-III ANVÄNDARMANUAL / USER MANUAL SW-III WWW.LIDEN-WEIGHING.SE 2014-03-26 OBS! Under vågen sitter en justerbar skruv (se bild). Standardinställning är
A study of the performance
A study of the performance and utilization of the Swedish railway network Anders Lindfeldt Royal Institute of Technology 2011-02-03 Introduction The load on the railway network increases steadily, and
Beijer Electronics AB 2000, MA00336A, 2000-12
Demonstration driver English Svenska Beijer Electronics AB 2000, MA00336A, 2000-12 Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this
Calculate check digits according to the modulus-11 method
2016-12-01 Beräkning av kontrollsiffra 11-modulen Calculate check digits according to the modulus-11 method Postadress: 105 19 Stockholm Besöksadress: Palmfeltsvägen 5 www.bankgirot.se Bankgironr: 160-9908
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
- den bredaste guiden om Mallorca på svenska! -
- den bredaste guiden om Mallorca på svenska! - Driver du företag, har en affärsrörelse på Mallorca eller relaterad till Mallorca och vill nå ut till våra läsare? Då har du möjlighet att annonsera på Mallorcaguide.se
2.1 Installation of driver using Internet Installation of driver from disk... 3
&RQWHQW,QQHKnOO 0DQXDOÃ(QJOLVKÃ'HPRGULYHU )RUHZRUG Ã,QWURGXFWLRQ Ã,QVWDOOÃDQGÃXSGDWHÃGULYHU 2.1 Installation of driver using Internet... 3 2.2 Installation of driver from disk... 3 Ã&RQQHFWLQJÃWKHÃWHUPLQDOÃWRÃWKHÃ3/&ÃV\VWHP
Materialplanering och styrning på grundnivå. 7,5 högskolepoäng
Materialplanering och styrning på grundnivå Provmoment: Ladokkod: Tentamen ges för: Skriftlig tentamen TI6612 Af3-Ma, Al3, Log3,IBE3 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles
Documentation SN 3102
This document has been created by AHDS History and is based on information supplied by the depositor /////////////////////////////////////////////////////////// THE EUROPEAN STATE FINANCE DATABASE (Director:
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET
Stiftelsen Allmänna Barnhuset KARLSTADS UNIVERSITET National Swedish parental studies using the same methodology have been performed in 1980, 2000, 2006 and 2011 (current study). In 1980 and 2000 the studies
1. Find for each real value of a, the dimension of and a basis for the subspace
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linear Algebra Date: 208-0-09 Write
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3. Engelsk version
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 Engelsk version Exempeluppgifter i årskurs 3, 2010, 2011 och 2012 1 Äp3Ma13 Part B 2 Innehåll Inledning... Fel! Bokmärket är
sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN1 Date:
Webbreg öppen: 26/ /
Webbregistrering pa kurs, period 2 HT 2015. Webbreg öppen: 26/10 2015 5/11 2015 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en
Adding active and blended learning to an introductory mechanics course
Adding active and blended learning to an introductory mechanics course Ulf Gran Chalmers, Physics Background Mechanics 1 for Engineering Physics and Engineering Mathematics (SP2/3, 7.5 hp) 200+ students
Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3. Engelsk version
Exempel på uppgifter från 2010, 2011 och 2012 års ämnesprov i matematik för årskurs 3 Engelsk version 2 Innehåll Inledning... 5 Written methods... 7 Mental arithmetic, multiplication and division... 9
. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA150 Vektoralgebra TEN1 Datum: 3 oktober 2014 Skrivtid:
IE1206 Embedded Electronics
E1206 Embedded Electronics Le1 Le3 Le4 Le2 Ex1 Ex2 PC-block Documentation, Seriecom, Pulse sensor,, R, P, series and parallel KC1 LAB1 Pulse sensors, Menu program Start of program task Kirchhoffs laws
and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix
Umeå University Exam in mathematics Department of Mathematics Linear algebra and Mathematical Statistics 2012-02-24 Gerold Jäger 9:00-15:00 T ( ) 1 1 2 5 4 1. Compute the following matrix 7 8 (2 p) 2 3
Webbregistrering pa kurs och termin
Webbregistrering pa kurs och termin 1. Du loggar in på www.kth.se via den personliga menyn Under fliken Kurser och under fliken Program finns på höger sida en länk till Studieöversiktssidan. På den sidan
For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linear Algebra Date: 07-08-6 Write time:
RADIATION TEST REPORT. GAMMA: 30.45k, 59.05k, 118.8k/TM1019 Condition D
RADIATION TEST REPORT PRODUCT: OP47AYQMLL Die Type: 147X FILE: OP47_LDR.xlsx DATE CODE: 95 GAMMA: 3.45k, 59.5k, 118.8k/TM119 Condition D GAMMA SOURCE: Co6 DOSE RATE: 8.6mRad(si)/s FACILITIES: University
BÄNKVÅG / BENCH SCALE ANVÄNDARMANUAL / USER MANUAL SW-III www.liden-weighing.com Svenska OBS! Under vågen sitter en justerbar skruv (se bild). Standardinställning är den för vägning. Om ni vill rengöra
1. Antag att g är en inverterbar funktion definierad på intervallet [0, 4] och att f(x) = g(2x).
Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Tentamensdag: 215-8-18 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel utöver bifogat formelblad.
Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325
MATEMATIK Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 08 kl 0830 30 Tentamen Telefonvakt: Jonatan Kallus Telefon: ankn 535 MMG00 Envariabelsanalys Tentan rättas och bedöms anonymt
Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM
Rastercell Digital Rastrering Hybridraster, Rastervinkel, Rotation av digitala bilder, AM/FM rastrering Sasan Gooran (VT 2007) Önskat mått * 2* rastertätheten = inläsningsupplösning originalets mått 2
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00
KTH MMK JH TENTAMEN I HYDRAULIK OCH PNEUMATIK allmän kurs 2006-12-18 kl 09.00 13.00 Svaren skall vara läsligt skrivna och så uppställda att lösningen går att följa. När du börjar på en ny uppgift - tag
Rep MEK föreläsning 2
Rep MEK föreläsning 2 KRAFTER: Kontaktkrafter, Distanskrafter FRILÄGGNING NI: Jämviktsekv. Σ F = 0; Σ F = 0, Σ F = 0, Σ F = 0 x y z NII: Σ F = ma; Σ F = ma, Σ F = ma, Σ F = ma x x y y z z NIII: Kraft-Motkraft
Tentamen i Matematik 3: M0031M.
Tentamen i Matematik 3: M0031M. Datum: 2009-10-26 Skrivtid: 09:00 14:00 Antal uppgifter: 6 ( 30 poäng ). Jourhavande lärare: Norbert Euler Telefon: 0920-492878 Tillåtna hjälpmedel: Inga Till alla uppgifterna
is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA19 Linear Algebra Date: 015-08-1 Write
Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:
IMCDP Grafisk teknik The impact of the placed dot is fed back to the original image by a filter Original Image Binary Image Sasan Gooran (HT 2006) The next dot is placed where the modified image has its
, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA9 Linear Algebra Date: 05-06-0 Write time:
a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.
Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer MA712A Matematik för lärare C, delkurs Matematisk analys Tentamensdag:
Regler Övriga regler:
Introduktion Flamestorm Duals II är Legend Spelbutiks andra dubbelturnering i Warhammer Fantasy Battles och spelas i lag med två spelare på varje lag. Syftet med denna typ av arrangemang är att stärka
Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem.
010-04-6 Sammanfattning Bernoullis ekvation Rörelsemängdsekvationen Energiekvation applikationer Rörströmning Friktionskoefficient, Moody s diagram Pumpsystem BERNOULLI S EQUATION p V z H const. g Quantity
Manhour analys EASA STI #17214
Manhour analys EASA STI #17214 Presentatör Johan Brunnberg, Flygteknisk Inspektör & Del-M Koordinator Sjö- och luftfartsavdelningen Operatörsenheten Sektionen för teknisk operation 1 Innehåll Anmärkningen
6. a) Visa att följande vektorer är egenvektorer till matrisen A = 0 2 0 0 0 0 1 1, och ange motsvarande
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MAA5 Vektoralgebra TEN2 Datum: juni 25 Skrivtid: 3
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION :15-13: 15
DVG C01 TENTAMEN I PROGRAMSPRÅK PROGRAMMING LANGUAGES EXAMINATION 120607 08:15-13: 15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition En ordbok: studentenshemspråk engelska Betygsgräns:
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version
Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are allowed to use: a calculator; formel -och tabellsamling
2. For which values of the parameters α and β has the linear system. dy/dt x + y
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA134 Differential Equations and Transform
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR
FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR Kontrollera vilka kurser du vill söka under utbytet. Fyll i Basis for nomination for exchange studies i samråd med din lärare. För att läraren ska kunna göra en korrekt
EXTERNAL ASSESSMENT SAMPLE TASKS SWEDISH BREAKTHROUGH LSPSWEB/0Y09
EXTENAL ASSESSENT SAPLE TASKS SWEDISH BEAKTHOUGH LSPSWEB/0Y09 Asset Languages External Assessment Sample Tasks Breakthrough Stage Listening and eading Swedish Contents Page Introduction 2 Listening Sample
the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA9 Linear Algebra Date: 05-0-6 Write time:
JUNE 2013 ABSORPTION REPORT
HIGHLIGHTS The number of available apartments in Manhattan was 5,017 at the beginning of June, 5% less than the previous month, and 28% less than in June of 2012. June s absorption rate of 4.9 months was
Problem. 2. Finn alla heltalslösningar till ekvationen xy = 2x y.
Hej! Här kommer några uppgifter du kan titta på som förberedelse för nästa års matematiktävling, eller bara för att det är roligt att jobba med matematik. En del av problemen är relativt enkla, andra är
2. Find, for each real value of β, the dimension of and a basis for the subspace
MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA50 Vector Algebra, TEN Date: 08-0- Write
Surfaces for sports areas Determination of vertical deformation. Golvmaterial Sportbeläggningar Bestämning av vertikal deformation
SVENSK STANDARD SS-EN 14809:2005/AC:2007 Fastställd/Approved: 2007-11-05 Publicerad/Published: 2007-12-03 Utgåva/Edition: 1 Språk/Language: engelska/english ICS: 97.220.10 Golvmaterial Sportbeläggningar
WindPRO version 2.7.448 feb 2010. SHADOW - Main Result. Calculation: inkl Halmstad SWT 2.3. Assumptions for shadow calculations. Shadow receptor-input
SHADOW - Main Result Calculation: inkl Halmstad SWT 2.3 Assumptions for shadow calculations Maximum distance for influence Calculate only when more than 20 % of sun is covered by the blade Please look
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH
Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH 2016 Anne Håkansson All rights reserved. Svårt Harmonisera -> Introduktion, delar: Fråga/